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FLUID OSCILLATIONS IN THE CONTAINERS OF A SPACE VEHICLE AND THEIR
INFLUENCE UPON STABILITY

By

Helmut F. Bauer

SUMMARY

With the increasing size of space vehicles and their larger tank diameters, which
lower the natural frequencies of the propellants, the effects of propellant sloshing upon
the stability of the vehicle are becoming more critical. Especially since at launch, usu-
ally more than ninety per cent of the total mass is in the form of liquid propellant., With
increasing diameter, the oscillating propellant masses and the corresponding forces in-
crease. Furthermore, the Eigen frequencies of the propellant become smaller and shift
closer to the control frequency of the space vehicle. To obtain smaller sloshing masses
and higher Eigen frequencies, the cylindrical containers can be divided by radial or cir-
cular walls. Another possibility is the clustering of tanks with smaller diameters, which
has the disadvantage of a weight penalty. For stability investigations the influence of the
oscillating propellant must be determined. For this reason, forces and moments of the
propellant with a free surface performing forced oscillations in a container must be
known. To obtain the Eigen frequencies and mode shapes of the liquid, forced oscillations
of a frictionless fluid in a cylindrical container of circular ring sector cross section are
treated. The assumption of frictionless liquid is justified, since only very small damping
is provided by the friction at the tank walls. In a cylindrical container, the lower part
of the liquid performs the forced oscillation like a rigid body and only the liquid in the
immediate vicinity of the free surface moves independently., With increasing mode
number, this motion penetrates less deeply into the liquid. The oscillating propellant
can be represented as a spring-mass-system, in which location and magnitude of the
model values are determined to give the same forces and moments as the liquid. In this
mechanical model, linear damping can be introduced. The magnitude of this damping,
which is provided by wall friction and possibly additional baffles, is obtained by experi-
ments.

After the introduction of the mechanical model for the propellants, the derivation
of the equations of motion presents no problem. The influence of propellant sloshing is
then determined by stability boundaries. To minimize this influence, various methods
can be used: First, subdivision of propellant containers of which the oscillating liquid



masses are decreased and distributed to different modes and the Eigen frequencies are
increased; second, proper location of the propellant containers; third, appropriate
choice of the control system, such as gain values and additional control elements; and
fourth, the introduction of additional baffles into the propellant, to disturb the flow field
and create larger damping.

This paper gives the results of theoretical studies for the response of the liquid
in an arbitrary cylindrical ringsector container, derives the model for the most fre-
quent tank forms and presents stability boundaries for various control systems.

SECTION I. INTRODUCTION

The present trend in modern space technology toward large vehicles presents
numerous new problems not encountered in the development of smaller missiles. For
example, propellant sloshing may be established by the motion of a space vehicle. Such
propellant oscillations are of importance for there is a possibility of extreme amplitudes
if the excitation frequency is in the neighborhood of one of the natural frequencies of the
fuel. '

Since more than 90 per cent of the total weight at take-off is liquid propellant, the
influence of propellant sloshing upon the stability of the vehicle becomes more critical,
especially with increasing tank diameter, because the oscillating propellant masses and
propellant forces increase very rapidly. Furthermore, the Eigen frequencies of the pro-
pellant decrease with increasing propellant tank diameter and are getting closer to the
control frequency of the space vehicle. For this reason,there will be a continuous ex-
citation of propellant and the influence of propellant sloshing upon stability has to be in-
vestigated.

To obtain smaller sloshing masses, one can subdivide the cylindrical tanks by either
radial or circular walls. Another possibilityis the clustering of tanks of smaller diameter.
This, however, has structural and weight disadvantages. If a space vehicle, due to an
atmospheric disturbance, deviates from its original trajectory, it should be quickly re-
turned to its preprogrammed flight path, This is performed by the contfrol and guidance
system and is executed by swiveling the thrust of the space vehicle. A poorly designed
control system can therefore continuously excite the motion of the propellant in the tanks.
For this reason, force and moments of the liquid in performing harmonic oscillations in
a cylindrical container must be determined and their influence upon the ‘stability must be
investigated. The exact solution of this problem is too complicated. To obtain the values
of the Eigen frequencies, the mode shapes, and the sloshing masses of the vibration
modes, the liquid vibration is treated for free and forced oscillations of a frictionless
fluid in a circular cylindrical ring sector tank. The assumption of a frictionless liquid is

justified since the damping due to friction at the tank walls is usually of very small mag-
nitude.

2



In a cylindrical container the largest part of the liquid performs the forced motion, .
like a rigid body. Only the liquid in the immediate vicinity of the free fluid surface os-
cillates by itself. This motion penetrates approximately one radius into the liquid surface
for the lowest Eigen frequencies. For higher Eigen frequencies, the venetration becomes !
smaller.

For stability investigations of space vehicles, the motion perpendicular to the
trajectory is of main importance. For this reason we will restrict our investigation to
these motions. Free and forced vibrations in the form of translatory, rotationalorroll ex-
citation of the container will be treated. In these motions the boundary conditions will be
linearized. This has, besides the simplification for the solution, the advantage that so-
lutions of different excitations can be superlmposed The fact that the liquid is consid-
ered irrotational results in the representation of the Veloc1ty vector of a fluid particle
as a gradient of a velocity potential. Since the fluid is incompressible, the velocity po-
tential must be a solution of the Laplace equation which does not explicitly contain the
time. This means that the flow in the container is determined at any instant by the
boundary conditions at that time.

The oscillating liquid can be represented as a spring-mass system for which the
magnitude and location of the dscil_latinglliquid masses and corresponding spring con-
stants must be determined. They must have the same Eigen frequencies and exert the
same forces and moments as the actual fluid.

At the Eigen frequencies of the propellant, the solutions of the potential theory
exhibit singularities. The oscillation of the propellant, however, is damped by wall and
internal friction indicating that an investigation of damped fluid vibration would be neces-
sary. Especially in the region of resonance where fluid forces occur which are a multi-
ple of the inertial force, an exact knowledge of these values is important. ‘The analytical
treatment of damped fluid oscillations, especially in containers with stiffener rings and
baffles, presents insurmountable difficulties. The mechanical model therefore serves for
the introduction of linear damping. The magnitude of the damping is determined by ex-
periments.

" After the introduction of the mechanical model, the derlvatlon of the equations of
motlon of the space vehicle represents no further difficulty. The elastic behavior of the
space vehicle can also be included in the analysns With increasing length of the vehicles,
these elastic effects play a more important role. Finally, the influence of the propellant
oscillations upon the stability of the space vehicle is investigated. The questions of how
to design a control system and where one should place an additional control accelero-
meter to minimize baffle requirements and to enhance the stability of the vehicle with
respect to propellant sloshing are answered. The influence of tank geometry, the lo-
cation of a propellant container as well as the gain values, and the vibrational character-
istics of a control accelerometer upon the stability boundaries are investigated. This is
performed by varying the different parameters and by determining the stability bourdaries
with the usual criteria of Hurwitz.



The problem of free fluid oscillations in a circular cylindrical container was
treated in 1829 by Poisson. Because the theory of Bessel functions was at that time un-
available, the result was not completely interpreted [1]. In the year 1876, Rayleigh
[2] gave the solution for free fluid oscillations in rectangular and cylindrical tanks of
circular cross section. In recent years, the problem of forced fluid oscillations has
grown in importance [3]. Graham and Rodrigue [4] determined the forced vibration of
liquid in rectangular containers while Lorell [5] gave the flow of a fluid in a two-dimen-
sional rectangular container and cylindrical tank of circular cross section for transla-
tional excitation. At almost the same time, reports about forced fluid oscillations in
cylindrical tanks [6, 7, 8, 9] began to appear at various companies in the United States.
Fluid oscillations in a cylindrical tank with annular [10] and elliptic [11] cross section
have also been treated. Budiansky [12] used integral equation techniques to determine
fluid oscillations in horizontal, circular cylindrical, and spherical containers. The first
Eigen frequency can also be obtained by an approximation method [13] if one considers
the liquid of small fluid heights as a compound pendulum. For large liquid heights, the
Eigen frequency can be approximated by substituting the liquid body by an equivalent cir-
cular cylindrical liquid mass of equal volume and equal free fluid surface area.

All circular cylindrical containers can be obtained from the results of the fluid
oscillations in circular cylindrical ring sector tanks. The mechanical model is pre-
sented only for the most important practical container geometries such as circular
containers and four quarter containers.

SECTION II. OSCILLATION OF A FRICTIONLESS LIQUID IN CY-
LINDRICAL CONTAINERS

An exact solution of the problem of fluid oscillations with a free fluid surface in a
container is practically impossible. Since atfirstwe are interested only inthe mechanical
values of the system, namely, the Eigenfrequencies of the liquid and the sloshing masses,
we assume for simplification that the flow field can be considered frictionless, irrota-
tional, and incompressible. With the results of this‘theory, a mechanical model can be
derived in which damping can be included. Since the cylindrical propellant containers
will be divided by radial or concentric walls to decrease the oscillating propellant masses,
we will discuss the fluid oscillations in a cylindrical container with circular annular sec-
tor cross section (Fig. 1). From the results of this analysis, we can obtain by limit
considerations the solutions for container forms which are most important in practice.

A. THE BASIC EQUATIONS

Because of the assumption of irrotational flow, the velocityv can be represented
as a gradient of the velocity potential ., For an incompressible medium, & must be a
solution of the Laplace equation [14],

Ad =0 (1)



The introduction of the potential & has the advantage that all interesting values
such as velocity and pressure can be obtained with one single function. The velocity dis-
tribution is derived by differentiation with respect to the spatial coordinates, and the
pressure p follows from the unstationary Bernoulli equation

_3__,4’_4__1_‘,2_‘_1_? + gz =0, (2)
ot 2 >

Here g is the longitudinal acceleration of the container. To solve equation 1, the
boundary conditions of the problem have to be derived. At the tank walls the normal ve-
locities of liquid and wall are equal.

_ QLT -
— = + v . grad) T=0, (3)

In addition, there is the boundary condition at the free fluid surface. If the equation of
such a surface at which the pressure p = 0 is described by

z = E (X, ya t) ’
then it is for liquid particles at the surface

T= z -7 (x,y,t) =0, (4)
: ) X . . . oz _ 0® _
With equation 3 this results in the linearized form — = — and represents the kine-

2
matic condition. From the linearized Bernoulli equat%on 2,Zwe obtain with the pressure

p = 0 at the free fluid surface,

. 1 9%

T e e (5)
from which, by elimination of z, we finally obtain

2P od
- -+ —_ =
ot & oz 0 (6)

for the free surface condition. Besides simplification in the treatment for the solution,
linearization of the problem has the advantage that various cases can be superimposed.

For the free oscillations of incompressible, frictionless and irrotational liquid
in a fixed container with a free fluid surface,we obtain the equations



'2‘%" =0 at the container walls. (7)
%% e _ .
ot g o 0 at the free fluid surface.

If the container performs' forced oscillations, then the basic equations can also be rep-
resented in simple form. In this case, the boundary conditions at the tank walls must
also be linearized. The solution of the Laplace equation is built by the potential of the
motion of the container without a free fluid surface (which is assumed to be small) and
the disturbance potential ¢ which is caused by the disturbance of the free fluid surface.

(%, 5, 2, )= &5 (% ¥, 2, 1) + (x5, 2 1), (8)
Both functions ¢, and ¢ satisfy the Laplace equation. The normal derivative of
the velocity potential ¢ must be equal to the normal velocity of the container wall. From

this we conclude that the normal derivative of the disturbance potential must be equal to
zero at the container walls.

The equations for the solution of forced oscillations are therefore

A® =0
0% . .
== = Normal velocity of container wall.
on
) (9)
0“d 0® )
o2 tg o = 0 at free fluid surface.

B. FREE OSCILLATIONS

We start with the free oscillations to find the Eigen solutions needed for the
series expansion of the solution of the forced oscillations. The flow field of the fluid of
a liquid with free fluid surface in a cylindrical container of circular annular sector cross
section and with a vertex angle 2« and a flat tank bottom is obtained from the solution
of the Laplace equation A¢ =0 with the linearized boundary conditions.



— = 0 at the bottom of the container z = -h

0z

g—r(p = 0 at the circular cylindrical tank walls r = a,b (10)
1 9¢ = 0 at the sector walls ¢ = 0, 27«

r og

9 9

gt—qu + g E—f = 0 at the free fluid surface z =0

With the assumption of the product solution of the form
¢ (r,¢,z) =R (r) G (¢) Z (z),
the solution can be found to be

¢ = { Cicosvp+Cysinve} [ { Cycoshaz+C ,sinhaz} {Csd), (Ar) +CgY,, (Ar) }+ { Cqz+Cg}
{Cer +Cyor ~V} 1. (11)

The velocity potential which satisfies the boundary conditions at the container walls is

Z h
m cosh [émn (2 *a‘)J i
o ¢ Cﬁn mn€>. (12)

2«
cosh [g h:l
mn a

o(r,0,7,)= Y Amnelwmntcos<
mn

Here the abbreviations are

()

=Clp) =dm (P Yy (b)) - Ty G Y 0 (p)
20 2o 2a S
(13)
The valuesgmn are the positive roots of the equation
- T t _ 1 N -
Ap =T OV, (kE) -3 (kO YL (6) =0, (14)
2a 2a 20 20 2w

in which k = b/ a is the diameter ratio of the inner and outer tank wall., The unknown
constants A, n can be obtained from the initial conditions. The equation for the Eigen



values of the liquid is obtained from the free surface condition 10.

2 _ . 2_8 h _ ..
w =Wt =2 gmntanh (5mn a)' m,n=0, 1, 2 (15)

It can be seen that the Eigen frequencies of the liquid increase with the square
root of the longitudinal acceleration and that they decrease with increasing tank diameter.
For large container diameters, the Eigen frequencies are small. This is of great dis-
advantage in designing a space vehicle control system. It indicates that, with increasing
tank diameter, the Eigen frequencies of the propellant are dangerously close to the con-
trol frequency which usually exhibits small values in the order of 0.2 to 0..5 cycles/sec.
A possibility for the increase of the Eigen frequencies exists in the change of the con-
tainer geometry. This is expressed by the value £,

For large values of the liquid height h/a, the square of the Eigen value w® ~ 8mn
is practically independent of the fluid height; and expresses that the ratio w/ a
changes its value only for small fluid heights h/a < 1. For higher mode shagé%, this
value stays constant to very small values of h/a then decreases rapidly to-
ward zero, (Fig. 2) £mn ‘

C. FORCED OSCILLATIONS

For a stability investigation of the total space vehicle, fluid forces and moments
due to oscillations of the vehicle about.its trajectory, that is, translational motion per-
pendicular to the flight trajectory or rotational about the longitudinal and latitudinal axis,
have to be known. We therefore investigate the case that the propellant container per-
forms forced oscillations. Since the liquid follows the motion of the tank wall in the
lower part of the container like a rigid body and since in the vicinity of the surface the
fluid performs independent oscillations, it makes sense to split the potential & into the
potential of the rigid body motion ¢ (liquid without free fluid surface) and a disturbance
potential ¢ which is caused by the free surface motion.

1. Translational Motion of the Container. We start with the special case that
the excitation is parallel to the container wall, For this case the boundary conditions are

b .

—S—; = ionemtcosqo at the circular cylindrical tank walls r =a, b.

g% =0 at the bottom of the container z = -h

1 o0&

r 9g =0 at the sector wall ¢ =0 (16)
od . i

1 82 _ ~10Qx emtsinZﬂoz at the sector wall ¢ = 271a

r 9o 0



2
and gtg’ +g g_@_ = at the free fluid surface =z =0

By extracting the container motion
iQt,
d={¢+ iQx rcosg }el (17)

one obtains the boundary conditions for the disturbance potential which are homo-
genous at the container walls.

9¢ =0 for r=a,b
or

9¢ =0 for z=-h
oz

15¢ =0 for ¢ =0, 27w
r O

g %(zé - Q% q‘93xorcos<p for z =0

For this reason the disturbance potential ¢ (r, ¢, z) which satisfies the Laplace equation
has the same form as 12, Omitting the double summation and indices for a more
lucid presentation,and introducing the abbreviations

- _ r - h
QD— (p9§ gmna:‘)“gmn a andK_&mna’
the disturbance potential is
6 (1,0,2) = AcosjC(p) SKLL) (18)

To determine from the condition of the free fluid surface the still unknown coefficients
Amn’ the right hand side of this boundary condition has to be expanded into a series where
cos ¢ is represented as the Fourier series

< - sin o 2&(—1)m+1sin& -
cos ¢ = Z a cosg with aj==%— a = (o =2ma) (19)
m=0 (m? 7% - a?)

The function r is represented as a Bessel series

o0

r= Z=0 bmnc(p) (20)



where

gmn
afksmn p*C(p)dp 2a N, (gmn)

b = = 4 7
S TOLT I:ﬂz —kZCZ(kgmn)]—4;r21£2 [4' -czacsmn>]<21>

K G tan L™ €mn
£ mn

The coefficients Amn become

iQa_b__x n?
B m mn o

o (1)

Am

where 7 :% is the ratio of the exciting frequency to the Eigen frequency. The ve-
locity potential & for translational container excitation in x - direction is then

2
ambmnC(p )n?cosh(k+¢)

d(r,p,z,t) = iSZerIQt rcose + cosg (22)

(1-n%) cosh & .

The first term (potential of the rigid body) satisfies the boundary conditions at the tank
walls while the second part ( disturbance potential) vanishes at the tank walls. The free
surface condition is satisfied by both parts of the formula. The free surface displace~
ment, the pressure-and velocity-distribution, as well as the forces and moments of the
liquid, can be determined from the potential by differentiations and integrations with
respect to the time-and spatial coordinates.

The surface displacement of the propellant which is measured from the undis-
turbed position of the liquid is

2
7 = 2 X eiQt rcose + ambmnC(P)n
g 0 4 (1-1?)

cosc,E . (23)

The pressure in a depth (-z) is

2 =
ambmnn cosh(k+¢ ) C(p)cose _
- pgz (24)

=-p —82 -g[-)z = _sz eiQt rcosp+
P P P %o ¢ (1-n°) cosh «

ot
At the outer container wall r=a, the function C (p) =2/ wgmn,while at the inner con-
tainer wall, r = b, the function C (p) has a value C (kgmn) . At the sector walls ¢ =0,

¢ = @, the cosine assumes the value 1, respectively (—1)m. The pressure distribution
at the tank bottom is obtained from 24 with z = -h (£ =-«).

10



By integration of the appropriate components of the pressure distributions, the
liquid forces and moments can be obtained. The resulting force -in x-direction is there-
fore

a 0 a o0
FX= Of_hf (apa—bpb)cosgodwdz—bf_bf ) sinadrdz. (25)

Here the first integral represents a contribution of the pressure distribution at the cir-
cular container walls, and the second integral stems from the pressure distribution at
the sector walls. With the mass of the liquid m = pT a’ha (1—k2) the fluid force becomes

+
ot (-1) m 1ambmnsin&n2tanhx
F_ =m92xoe 142 N, (&)
aa(1-k?) (1-n?) «
-2 N
o 2
+ 2 2 __2 —kC (kg ) .
(mm* -a*) L wgmn mn (26)
The force components in y-direction is governed by
a 0 a o0 a o0
Fy= f f (apgy —bpb) singpdedz + f f pg0=5z cosadrdz. - f f p¢:0drdz (27)
0 -h b -h b -h
and results in
_ a b n?ri-(-1) Pcosa]tanhk
F = -2m@ix e 00 —Lmn ; N (&
y 0 —aa (1-k%) (1-n°)« o “mn
=2
a 2
+ 2 2 —_2 [ —kC (kg )] .
(m*m* -a*) wgmn mn (28)
Here (see Table 1)
1 Emn
Nolbmy) = fk5 C (p)dp. (29)
mn
The first term,
iQt,

52
me Xo€

11



in 26 represents the inertial force of the propellant that is the force of the solidified
liquid. The fluid moments My and MX with respect to the point (0,0, -h/2) are given by

a 0 h a a
- n 2
My = f f (ap&l —bpb) (2 +z) cosqdodz+ f f pCr cos@dedr
0 - 0 b
a 0 h
- - sino (7 +z)drdz
bf_hf Po=a (3 +2) (30)
and
a 0 " a a
- f f (ap -bp, ) (= +z) sinpdedz - f f P rzsingodwdr
a b" 2 _ c
0 -h 0 b
a a 0 h
f f(— +27,) P drdz f f(E +7) p =a{cosb‘zdrdz. (31)
b -h ° b -h ¢

M. is the moment about an axis passing through point (0,0, -h/2) parallel to the y-axis
while My is the moment about an axis parallel to the x-axis through the same point. In
these formulas the first integral again represents the contribution of the pressure dis-
tribution at the circular cylindrical tank walls. The second integral is the contribution
of the bottom pressure while the remaining integrals represent the pressure contribu-
tion at the sector walls to the moment. After the integration has been performed, the
moments of the liquid are

: o (-1 a b g
o2 it | 1+k? ( smozcosoz) sina m_mn
My mQax e b /a 1+ % + Z o (1-D) (1K) £ . tanh « +
_ mn
, < - =242
2 i g N ( ) + o’ r 2 _KC (k ||+ 2 gmnNz(gmn)
K coshk ] o) gmn (mm? -a?%) Lﬂgmn gmn (mm? -a%)kcoshk
2mga 1-K3 sino .
+ B (o) (32)

3 (1-Kk?) o

12



a b [1-(-1) Tcosa n
M = mPax ol (1+k%) sin®e 1 ‘m mpl 17 (1) cosan i e+ 2.
x ° 4h/a a a@ (1-n") (1-K)g @ N K
T . 2078 Ny (& N
. 1 a2 2 mn 2 °mn
(COShK - 1)J N, ( gmn) * (mm® -o?) I:ngn “kC (kémn% * (7 m? —&Z)Kcoshfc}
_ 2mga (1-k%)  (i-cosa) (33)
3 (1-Kk?) a

Since the reference axis does not pass through the center of gravity of the undisturbed
liquid, thelast term in the moment formula represents the static moment of the liquid.

The velocity distribution is in radial direction
a b n’t cosh(k+t)
m mn “mn

(1-n?*)a cosh k

2% C'(p) cosg'oJ (34a)

. iQt
u_ = = -182er cosg +

r or

in angular direction

1 i a b g 1
u =1 _g_fg_ _ —iQerIQt sing + m mn" (m/2a) cosh(k+¢) ¢ (o) sin 541
¢ ¢ r(1-n%) a cosh k P Gk
and in axial direction
2 .
w =22 _iox o i £ TR C(p) cosg (34c)
Y 0® a(1-n%) cosh « pICOSE .

In the equations for the pressure, forces, moments and velocity distribution of the
liquid, the term for the solidified liquid is represented as a single term and not as a
series. This results in a faster convergence of the results. The velocity distribution
in the container is obtained by omitting the first term in the braces, that is, omitting
the term cosg for the radial velocity component of u, and sing for the angular compon-
ent of Ugp. To know completely the response of the liquid to a translational motion the
excitation in y~direction also has to be treated. The procedure is only slightly different
from that of excitation of the translational excitation in x-direction and makes a compre-
hensive investigation unnecessary. The flow field of the liquid with respect to forced
oscillation of the container in y-direction is again obtained from the solution of the po-
tential equation 1. The boundary conditions at the tank walls are, for this case

& .
g; = iﬂyoelgtsin(p at the tank walls r =a,b.
0P

P 0 at the tank bottom z = -h

13



9% iQt

1 . )

r 0 10yoe at the sector wall ¢ =0
0] i _

% _—(?q) = iQyoelﬂtcosCM at the sector wall ¢ = 27w

By transformation similar to the one previously used, the container motion can be elim-
inated. This is performed by substituting x  cos¢ of the previous transformation by y,
sing. For the determination of the unknown coefficients, A sing has to be expanded
into a Fourier series

mn?

X _ - . _1-cosa . _2a](-1) cosa -1] |
sin ¢ = nzocmcosgp with =35 "y T (i o) (35)

The velocity potential finally is

2
Cmbmnn cosh (k+¢)

® (r,p, z, t) =iQyoe1Qt rsing + C(p)cose (36)

(1-n%) cosh «
The terms of the double summation vanish at the tank walls while the term

iQy, rsmgoelﬂt satisfies the boundary conditions at the tank walls, Both satisfy the free
surface condition. The corresponding results are presented in Table 1. The velocity
distribution for excitation in y-direction is obtained from 34 by substituting y, for xo
and cy, instead of ay, in the double series. Furthermore, one has to substitute in the
velocity component u,. the value cosg by sing and in Uy the value sing by -cos ¢@.

2. Rotational Oscillations. Besides translational oscillations, a space
vehicle also performs rotational oscillations. Therefore, rotational excitation of the
containers about the origin of the coordinate system, which is now placed in the middle
between the tank bottom and the undisturbed fluid surface on the vertex axis of the tank,
must also be performed. If §, is the rotational amplitude about the y-axis and if X, is
the amplitude about the x-axis, the boundary conditions are expressed by

iQt

o® -i26,e  zcosg

LA 0%, =

or —iQXOelgtzsimp at the tank walls r =a,b.
iQt

5 .

2 _ ] 92058,0TCOSP ot the tank bottom z = -

oz iQX,e Trsing 2

12 0 it

r 9 -iQX,e  z at the tank sector wall ¢ =0

14



) it .
1 62 _ 1g.woei Zsine at the tank sector wall ¢ =27«
r 8¢ -iQX, zcosw
2
%‘Ez@ +-g %;2 =0 at the free fluid surface z = -i%

By elimination of the rigid body potential ¢, with
i f,c08¢
® = |-iQrz + ¢
Xosingo

iQt
e

’

the boundary conditions at the tank side walls (r=a, b, and ¢ =0, 27@) can be made
homogeneous. The solution of the Laplace equation which satisfies these tank wall con—
ditions is

¢ = [ Acosh ¢+ B sinh ¢ ]C(p)coso . (37)
Because of the moving tank bottom two hyperbolic functions appear. From the boundary

conditions for the tank bottom and the free fluid surface, one obtains with the series
expansions of cose, sing and r

abmnnz ~ K K k] [a
Amn B £ (1-n?) coshk _2 sinh (5)—' (E ") cosh (E )- { m} . s
mn ©
m
a.]:)rnn'r;2 - « K k. 7 [2m
Bon = £ (1-n?) coshk (v - 2 ) sinh (E) - 2 cosh (E) {c } (38b)
mn - ) m

The abbreviation y =g¢ equals the reciprocal of the frequency ratio 12 for

mn/aQ?
large liquid fillings. With this the velocity potential is

o (r . be 0 10t S | -rZCoSQ
2@ Zs e y + (Acosh ¢ + Bsinhg ) C(p)cos@|. (39)
o] ~rzsing

The term in the {ront of the double series satisfies the boundary conditions at the con-

tainer side walls while the terms of the double series vanish there. The double series,
together with the terms in front of it, satisfies the boundary conditions at the tank bot~

tom and at the free liquid surface. The corresponding results are given in Table 1.
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Here the forces contain, in the space-fixed coordinate system, the weight component
as the first term. The displacement z *of the free fluid surface in tank fixed coordi-
nates is obtained by subtracting from the displacement Z of the space-fixed system the
value due to container rotation
iQt

% rcosgé e
Z=g7 - .

rsin<pxoe1
For design of the roll control system, the knowledge of the response of the liquid due to
roll excitation, ¢ = <p0e19t, is important. The origin of the coordinate system is again
placed in the undisturbed free fluid surface. This results in a simpler representation
of that part of the solution which depends on z. The boundary conditions are

%I’ = at container walls r = a,b,

9%

5; = 0 at the tank bottom z = -h, -

i 0d _ . iQt -
7 5;0 =1Qroe at the sector walls ¢ =o0,q,
PR o

— + —_— = i = .
P g o 0 at the free fluid surface z =0

However, these boundary conditions cannot, as in the previous cases, be satisfied by
one potential but by two potentials,

Qbi: ¢)1(r’(p ), ¢ =d(r, Q’O’Z;).,,
B (02,0 = [ $o(r,0) + 0 (r,0,2)]e .

Both functions satisfy the Laplace equation. ¢ (r, @) is determined such that it satis-
fies the boundary conditions at the tank side walls r = a,b and ¢ = 0,27a. The solution
represents nothing but the flow in an infinitely long tank. With the help of the distur-
bance potential ¢ (r, ¢,z), we take care of the boundary conditions at the tank bottom
and at the free surface. The boundary conditions for the functions ¢, and ¢ are given

by

9¢
o
or =0 at the tank walls r =a,b.
aq)o ,
Sg-; = 1Qq00r at the sector walls ¢ = o, 21«

i6



and

=0 at the tank walls r =a, b

at the sector walls ¢ =0, 27a

JER
<I:I>

il
o

at the tank bottom z = ~h

I

o0 Q% = szche at the free fluid surface z = 0.

From the equation A¢, = 0, one obtains the Poisson equation

Ap, =- 4iQ¢o (p-1a)  with ¢g = iQ% r’(¢-ma) + ¢4

The boundary conditions are then

901 _ o, _ -
o -21ngor(go Q) for r = a,b.

991 _ =
90 0 for ¢ = 0, 27w,

A solution that satisfies the last boundary conditions in ¢ has the form

o0
¢y (r,0) = Z R_(r) cosg.
m

m=0
Introducing these into the Poisson differential equation, we obtain an infinite number of
ordinary differential equations for the function Rm(r) if on the right hand side the func-
tion ¢ is represented as a cosine series.

- 43 {
— 7 1 = = = —_a

p-me = n?iomeOS(p with Po o, Pom 0, Pom-1 e (2m-1)2 ° (40)

The obtained differential equations are
&R, , 4R

dr® * r dr

2
TRom L1 Pom _om’ R =0 form=1,2
dr? T dr alrt 2m m=2,&...
2 dr . -
ARom-1 1 2m-1 _ (2m-1)? 1610 o {
dr? r dr 4o?y? om-1 7 (2m-1)?

form=1,2,...
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They have for o # 1/4, 3/4 with the boundary conditions in r the solutions

'Ro(r) =0
Rzm(r) =0 2m-1 2m-~1 +2 om-i
. P 2u 2o
8iQy a‘t 20
R, (x) = o SlEy Ak )2
2m-1 7 (2m-1) [@m-1) 2r?-a?) a 2m-1 r
2u
(1-k )
2m-1 2m-1
2
-k )Y om £y
2m-1 T (2m-1)
2a
(1-k )
The solution ¢ _(r, @) is for @ # 1/4 and 3/4:
8100 a’a cos ) 2];10:1
=i 2 - -+ . . -
qbo(r,go) 1Qcp0r (¢-ma) T (2m-1)[ (2m-1)2 7% -4& 2] (a ) .
2m-1 +9 2m-1 2m-1 2m-1
(1-k 2a ) a 2a 2x 2c
s &) . (k* -k )k _ 2w (3)2
2m-1 7 (2m-1) a
2a o
(1-k ) (1-k )
. . pe s . . .= 2m-1
This represents an infinite series in m. Itis ¢ = 50 Q.

The solution of the equationA¢ = 0, which satisfies the homogeneous boundary condi-
tions of the container walls, is given by

o (r, 0, 2) :Dcosh (k+g)

cosh kK C (p) cosp.

Introducing the Fourier series for ¢ in the function ¢ (r, @) and satisfying the boundary
conditions at the free surface, one obtains with the Bessel series the constants Dyyp.

It is

D =0 m=0,1,2,....
2m
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2m-1 9

2w
e 1 - _

D _ Siﬂwoazazn*z 2m—1n(1 k ) q2m—1n
2m-in  7(2m-1) [ (2m-1) 37 -43%] (1-n* %) omo1
2m-1 2m-1 2¢

2a 2a (1-k )
(k*-k )k 7 (2m-1)
- 207 me—in
The solution of A ¢ = 0 is therefore
o (1,0, 7)- 5100020 7*2C* (0*) cosh (£%+ &) cosg
@y 25 ™ " (2m-1)[7*(2m-1) 2-4a&* | (1-9*?) cosh k¥
2m-1 2m-1 2m-1
2 2 9 20, zZa
1 - - -
om-1n (17K ) Ay oK Kk 7 (2m-1)
2m-1 2a me-in
20
-k ),
1
Here the gmn are roots of CZEn—i = Q.
o

v .. 1 .
The values g2m—1n’ h2m—1n’ 12m—1n’ qzm—in are the coefficients of the Bessel series

0

r 2 (%
( )—HZJO g, nCF )

a,% . P
(r) Z h2m—1nC (r™)
n=0
2m-1
r, 2a < 3%
= 1 C u
(a) —  2m-1n (%)
n:
2m-1 w
2 2« %
(r) n-ZJ;) Ol2m in (0%)

19



3
DR N r v P2m-1 w9, s x_ o®
where C™ (p") CZm—i (é’:zm—in a) andj pTCTe(p¥)dp* =1

20 kg?,m-in
- fgzm‘in *30% (p* )dp* /¢ ¥
& 2m-1n i« P P PT/E om-tn
£2m—1n

ot
G

E Al

2m-1 d .
h = g2 c* %y SR *
2m-1in £ 2m—1nf (p™) /1

pl‘
kg2m—1n
i _ fometn ERL oy 2m-1
- f Jo 20 2w
21’1’1—11’1 kg p ~ C 3% 23 )d L3 / I %
2m-1in (p P £ om-1n
2m-1
. g 2 Som-1n  (1- 2;‘;“1 )
2m-1in 2m-1in p* S e % *
kEy o in C*(p*)dp™ /1
The velocity potential finally is
. 2 - =
®(r,y,z,t) = ngooemtaz : (i ) (o-7a) + 8acosg

7 (2m-1) [72(2m-1)? -4a?%]

2m-1 2m-1 2m-~1 2m-1 2m-1
r,. 2« 2a 2 a ., 2a .9 2 20
(e (1-k ) - () (k* -k ) k 2 &
2m-1 m (2m-1) a
2a
(1-k ) 3 2m-1 49
- h (1-k 2@ )
83:2C* (p*) n*%cosh (¢*+ k* ) cose. 2m-1in
7 (2m-1) [ 7 (2m-1)% -48%] (1-n* ?) coshk*
| 2m-1 2m-1
2a 2«
- k2 _
Yom-1n (K & )k 7 (2m~1)
2m-1 2% om-1n
2a
(1-k )
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The first term satisfies the boundary conditions at the sector walls while the infinite
series vanishes there term by term. In the boundary conditions at the tank wall r = a,

r = b, the double series vanishes term by term, and the simple summation together with
the first term vanishes after differentiation with respect to the radius r. The corre-
sponding results obtained from this velocity potential are represented in Table 1. In the
moment about the z-axis, one recognizes that the first term represents nothing but the
moment of the solidified liquid. By omitting the double series, the moment of the liquid
in a infinitely long container is obtained. As already mentioned, the results are only
valid as long as the apex angle o # 1/4 and @ # 3/4. In these cases, the nonhomogen-
eous solution of the differential equation exhibits resonance conditions with the solution
of the homogeneous differential equation for the function Ry (r) in the case m =1 and Ry
(r) in the case m = 2. In the case of a cylindrical container with a cross section in the
form of a circular quarter ring,

-, 2 .
Ry(r) = Cyr*+Dyr 2+-T—r 1ngor21nr.

All other solutions of the differential equations in Rm remain the same. Here the in-
tegration constants C; and Dy are obtained with the boundary conditions for r. For this
tank form the velocity potential, the free surface displacement, and the pressure distri-
bution are obtained by introducing « = 1/4 and by substituting for the term of the index
m=1 in the simple series the value

1 2k! T r? 2kink a2
- |:1 o Ink + 21n (a) ] (a) - T (r) cos2¢.

The term for m = 1 in the double series in substituting by

[ 2k41nk + 2k*nk
&2 —_ h 2
1 o I'ZBn-}-gn TR 1 Tk nJ cosh (Kq+ gz)Cz(pz)n2cos2go
2
T 20 (1-n5 ) coshk,

where the values 3, are the coefficients of the series expansion

2 [e.e]
CYmE) = ), B,Ca(p)
n=0
and are

fba r’ln (%)Cz(gml% ) dr

a r
a’ L rCi(s, o )dr

B =

n

The terms h, and g, are coefficients of the expansions
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.2' ©
) = ), 8,Calpy)

n=0

a2 <
() = ), b Cylpy)

n=0

and are

a r
f r?’Cz(gzn g)dr
b

g =

n 2 [a 2 r
afb rCz(gzn a)dr
a? ra r, dr

b fb Caléy, a) r

n

fbrcz(};zn a)dr

3. Special Cases. Containers of circular cross section are most frequently
used in missiles and space vehicles. With increasing diameter of the containers,a sub-
division of the tanks by longitudinal walls to decrease the sloshing propellant masses can
hardly be avoided. For instance, a cylindrical container could be divided into four
quarter tanks. A concentric container also could be of some advantage singce, by proper
selection of the diameter ratio, the liquid oscillations could be brought into favorable
phase relations so that the influence upon the total stability could be partially cancelled.
Fluid oscillations in a cylindrical container of annular cross section have been treated
[10]. The following will be restricted to the treatment of cylindrical containers of sec-
tor circular and quarter circular cross section. The forces and moments of the liquid
are given in Tables 2 and 3.

a. Sector tank. Let the ratio k = b/a of the inner to the outer tank
diameter approach zero; then we obtain the results which are due to the fluid motion in
a cylindrical container of circular sector cross section. Here the determinant

Bm (5 =0
- 20
becomes J'm (g) =0

2a

the zeros eof which are denoted by €,,,. The expansion functions C (p) become simply
the Bessel functions J (p)=J - (Gmn r ), and the coefficients by, are given in the
simple form 5o a
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€
mn 9
afo p“J(p)dp
bmn - € -
mnf “mn 9
o pJ (p)dp

T(m/40+3/2) ),  (m/20+2u+1)T(m/4ortpt1/2)

I'(m/4a-1/2) u=0  I'(m/4q+u+5/2) m/20+2u+1 (€
2a ¢ (1-m?/40%f ) 32 (e )
mn mn’ “m/2a ' mn (42)
m,n =0,1,2,.....

In the force component the singular solution at r = 0 must be omitted. Therefore,
the value 2/m¢ 1, -kC (képyp) in the forces and moments is replaced by J(€,,) . The ex-
pression Ny (&) will be substituted by Lg(€,,,) since f C (p)dp is replaced by fJ
(p) dp. The same is valid for N; and N, which are replaced by L, and L,. The velocity
potential, the free fluid surface displacement, the force and moment components are
represented for the various excitation forms in Table 2.

In the case of roll excitation, the results for the flow of the liquid in a circular
sector tank can be obtained from the previous results of a container of circular ring sec-
tor cross section by introducing k=0 and substituting for 1y . 4, the value 5., 1, and
for Zom-1n the value €om-in+ These are coefficients of the expansions.

in

2m-1 w

r 2o r
= = J =
(a) z f2m—1n 2 —1(€2m—'1n a)

n=0 ——

2x
(o]

r 2 _ r
(a ) n—z(:) eZm—inJZm—i (€2m—1n a )

2q

Again the results are valid only if o # 1/4, 3/4. For a = 1/4 one substitutes, in the
velocity potential the free fluid surface displacement of the liquid and in the pressure
distribution for the first term (m = 1) in the simple summation the value

—71; (jz—)z{ 21n (g) + 1} cos2¢ .

The term for m = 1 in the double series is replaced by

1 i (2f e ) cosh(ky+ 2 )n}
. |
n=0

(1-12) coshr, Js(py) cos2¢ .

Here the values fn are the coefficients -of the series expansion
o0
r 2 T r
(g—) In (—é-_) = 1’1=Z(-;I fng( €21’11 EL-)
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a r
f r3 ]n(a Jol€s g)dr

with fn = "
2 2 =
a j(; I'J2 (€2m a)dr

and the coefficients e are obtained from the expansion

(e e)
ry_ r
) —n?d e Jyle, ~ 7)dr

with a .
3 r
fo T Jz(ezm 2 ydr

en B 2 a 2 r
a fo rd; (ezm a)dr

b. Circular cylindrical container. For a cylindrical container of cir-
This represents a tank with a side wall

cular cross section, o must be taken to be one.
in the ¢ = 0 plane from r = 0 to r = a. The values ay,, bimn, Cm are therefore

a =0 a_ =0 a, = lim | _ asin2re | _
° m a— T (1-a?) (43)
c =0 =0 c = - 8 1
o ®am om-1~ 1 [(2m-1)%-4] m=1,2,3.... (44)

The value c, also vanishes. The limit is

c, = lim | a(cos2ma - 1) -0
a—i T (1-a?) )

To obtain the solution for the circular cylindrical container, one chooses the

ion. For this

excitation in x-direction at which the side wall does not disturb the motion
is needed. Considering the singularity of the gamma-

reason, only the expression b
function at the argument zero “hd the recursion formula of the Bessel function

(x)

1 — —

J v (x) VJV (x) XJV+1
from which for x = €, as a root of the equation J; ( en) = 0 we obtain the value €.J,
(e,) =Jy (ey). The expression by, finally is

2a
b - 45
2n (Elzq’i)J1(€n) (45)

The velocity potential for translational excitation in x-direction is therefore
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, iot r J; (pIncosh (k+g)
t) =iQx e  acos - +
®(r,p, z,t) =1i N ¢ a 2 (gil _1)J1(€n) coshl{(1~n2)

(46)

The natural frequencies of the liquid in cylindrical container of free fluid surface and
circular cross section are given by

w
p =2 L Jg
n T 27 a “n

o [

tanh (e
n

The zeros of the first derivative of the Bessel function of first kind and first order are
€,= 1.8412, ¢, =5.3314, € = 8.5363, ¢5 = 11.7060.

As can be seen from the formula and from the numerical result represented in Figure
2, the natural frequency of the liquid in a partially filled container changes considerably
at constant longitudinal acceleration only for small liquid height (h/a <1).

This is true because the hyperbolic tangent practically assumes the value one for values
of (h/a)> 1. The natural frequency increases proportionally to the square root of the
longitudinal acceleration g. Furthermore, it can be seen that the Eigen frequency of the
fluid with increasing radius a changes its value like 1/Afa~ . This indicates that for
increasing tank diameter , the natural frequency of the liquid becomes smaller. From
the free fluid surface displacement Z (Table 3) one concludes that the first term rep-
resents the displacement with respect to small excitation frequency. For these the
surface displacement of the liquid (neglecting terms of Q%) is a plane of the form

r cos ¢, since the required pressure is replaced by the static pressure. With increas-
ing excitation amplitudes X, the free surface amplitude becomes larger, while for in-
creasing longitudinal acceleration of the container the disturbances of the free surface
become smaller. The wave form of the free fluid surface for excitation frequencies Q
before the first and second resonance is presented in Figure 3. The surface displace-
ment of the liquid for various frequency ratios is given in Figure 4. Here the given
curves for the displacement correspond to the indicated points of frequencies in the
magnification function for the displacement of the free fluid surface at the container wall
(Fig. 5).

In the fluid force the limit value is

m+1 sin27o l: 402

Iim 4 (-1)
a—1
m—2

™ (m?-4a?) J_rll_(Emn)-{—LO(emn):l =J1(en).
2w
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A similar result is obtained for the moment where Lz(en) =J 1(€n) / ei

and lim [(-1) sin2ro; 8 J = 2.

i o (m?-4a?)
m—2
In the force the first term again can be identified as the inertial force of the liquid

(Fig. 6), while the first term in the moment represents the moment with respect to the

shifting of the center of gravity of the liquid for small frequencies (94 terms neglected)

(Fig. 7). For surface displacement proportional to r cos ¢ in which the surface as-

sumes an angle a from its undisturbed position, the shifting of the center of gravity is
a’tgo

X =

S 4h
Here, tgo = X/g. The contribution of this part to the total moment of the liquid is there-
fore

M_ = - —mia/4 o

The shifting of the center of gravity in vertical direction can be neglected, because it is
represented by a term of the second order. The velocity potential for rotational exci-
tation © = eoelQt is

Ceen 0 rz J1(ph’*
&(r,, z, t) = meoe a‘cosg ) 7 3 +2 En(€; '1)J.1(€n) coshi (1-n%) "
I:('y-[- %) cosh (% +¢) —4ysinh % sinhg -2sinh (g —g)] (47)

The free surface remains horizontal for very small and infinitely large excitation fre-
quencies. The wave form of the free surface is presented in Figure 4 for various fre-
quency ratios. Figure 5 shows the magnification function of the free surface at the tank
wall. The force component is shown in Figure 6, and the first term in the force repre-
sents only the weight of the liquid. In the momentthe first term again represents the con-
tribution of shifting of the center of gravity of the liquid for small excitation frequencies.
The free surface in that case remains horizontal and has, with respect to the tank
bottom, an angle & = 6. The shifting of the center of gravity therefore is (tg o = )
it
a’tgo _ 295°
4h ~  4h/a

The contribution of the shifting of the center of gravity to the moment about the center
of gravity of the undisturbed liquid (origin of the coordinate system) is therefore

mgag emt
g o

My =" "ma

The magnification function of the moments are represented in Figure 7.
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c. Container with quarter circular cross section. The results for the
liquid motion in a container of a quarter circular cross section are obtained by substi-
tuting into the equations of Para. a. « = 1/4. With this the velocity potential results in

&(r. 0, 2, t) = ionelgt . ambmn0052m¢cosh(x+§)sz(p)nz )
reose (1-n%) cosh « (
2
where Loz _1)2m+1 ) _ 16aemn(m ~1/4) .
o 7 m w(m®-1/4)° “mn (einn—élmz)Jzzm(emn)
o0 J (e )
Z 2m+2y+1" mn

4=0 (2m+2p-1) (2m+2y+3)

The values € mn 2T the roots of the equation J ,Zm (emn) . For a container of circular
symmetric cross section the orthogonality conditions of the trigonometric functions are
responsible for the appearance of only one class of resonances in the forced oscillations.
Here, also,as in the sector tanks the other class appears. The results of the liquid
motion in this tank are shown in Table 3. Table 4 represents the roots in the equation
J'zm (emn) = 0. From these it is recognized that the zero root is larger than the first
(because of J (') = - Jy). This indicates that the zero Eigen frequency is larger than the
first Eigen frequency. Figure 2 exhibits the ratio f _A/g/a. They present essentially
the same behavior as the frequencies in a cylindrical tank of circular or annular cross
section except that the Eigen frequencies are slightly larger than those of the circular
cylindrical container and that they are closer together. Figure 8 represents the wave form
of the free surface for excitation in x-direction with forcing frequencies in front and
shortly before first resonance (wyy= 5.5 1/sec.) as well as between first and second
resonance (wgy= 6.2 1/sec.) and shortly after second resonance. In the liquid force
and moments, the values for Lo and L, are

[>e)
2
Lo T € Z J2m+2u+1(€mn)
mn u=0
2 0 J (e )
I = 2(4m*-1) Z 2m+2p+1" mn
2 = € i /=0 (2m+2p-1) (2m+2u+3)

In the force FX, the first term again can be identified as inertial force of the fluid
(Fig. 9). The last term in the moment represents the static moment (Fig. 10).

The velocity potential for rotational excitation § = Boemt becomes

. it .
b(r,p,z,t)= —1960e { rzcos@- [ Acoshg+Bsinhg] sz(p)COSquﬂ } . (49)
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Here the values A o B are the corresponding expressions 38a and 38b if one substi-
tutes the appropriate vaIm s for a_ bm , and for gmn the values €mn® The first term
in the force represents the force component with respect to the weight of the liquid. The
magnification function is shown in Figure 11, while that for the moment is represented in
Figure 12. For roll excitation of the container ¢ = @ e, the velocity potential is

& (r,p,x,t) = ngoOe1Qt

2 4m-2 2
2 (o =Ty 4 2a°cos[ (4m-2) ¢ ] _r_) _ {x/a)
4 7 (2m-1)[ (2m-1)2-1] ['2 (2m-1)
%2
22 Upmotn Cametn CP M I o 6F)

2a2 ]
COS2Q* T T (2m-1)2 “11(1-72) coshm‘

raot!. I
+ = =) In(y) +
T ‘a) L (z)

Do

2 -Q b s2 YA a2

% 4 a’  (2f57%) cosh (K} +&% InFed, (pf) cos2¢ .-
+ £ 4m-2) ¢ + = :

cosh (k' +¢") cos (4m-2) @ +— (1-775%) coshie* ) (50)

Here the values €_ are the roots of the equation Jé (2_)= 0 while the values €
n n 2m-1n

are solutions of the equation J;m—Z(EZm-in) = 0, Furthermore, itis
P o 8 _ w  Ioural€)
n~ (& -4) T (5 Y (D) (ut3)
=0
o = 4
n (E;1 ~4)J3(€ )
fom-tn = @ jiL((zzmnc;—ii))?],] )
2m-1n 4m-2" 2m-1
and
2me 2m-1
®om-1n (m—fi)['é2 —421?;-;1111—12)2]J2) (e )
2m-1in 4m-2" 2m-1in
oi (4m+zu_1)J4m+2g—1(22m-1n)
sty (2m+2u-2) (2m+2u-1) (2m+u) (2m+u+1)

One recognizes from all these results that only one-half of the natural frequencies appear.
Figures 13 through 15 illustrate the various magnification functions for the forces and
moments of the liquid. Here the value L, Lj, and L are

o0
2 -
L2 Y 3 G ).
° & . in 4=0 4m+2pu-1" 2m-~in
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L. = 2m-1 o (4m+2M_1)J4m+2M—-1(€2m—1n)
1 7z -~
€9 m-1in 120 (2m+p~1) (2m-+p)
2(4m-1) (4m-3) = J4m+2,u—1(€2m—1n)
L2 = = Z

€om-1n /=0 (4m+2p+1) (4m+2u-3)

SECTION III. THE MECHANICAL MODEL
A. DISCUSSION

Since in the frictionless liquid the magnification function exhibits singularities at
the resonances, all previous results are not applicable as long as the exciting frequency
is too close to the Eigen frequencies. In the vicinity of these, finite values occur which
influence the stability of the space vehicle considerably. Especially at the lower Eigen
frequencies of the propellant, liquid forces occur which are a multiple of the inertial
forces of the propellant. An exact solution of damped liquid vibrations is practically
impossible. However, a good approximation can be obtained by treating each vibration
mode of the liquid as a degree of freedom and representing it as a spring-mass system.
Since the mode shapes are not considerably changed by the small damping of the liquid,
magnitude and location of the spring constants and sloshing masses can be derived from
the results of the previous paragraph. In this mechanical model, damping can be intro-
duced in a simple way in form of linear viscous damping. Actually the forced damped:
fluid oscillations represent a nonlinear vibration problem. Since the treatment of a non-
linear system of many degrees of freedom represents considerable difficulty, equivalent
linear damping is introduced. From this, the magnification functions and their phases
can be numerically determined for various damping factors and will be compared with
experimental values. This way the equivalent linear damping factor of the liquid is ob-
tained. In the following, the mechanical model will be derived only for the most im-
portant practical container arrangements. The determination of the various elements of
the model will be exercised in paragraph 2 of this section.

B. THE MECHANICAL MODEL FOR THE DESCRIPTION OF LIQUID MOTION

In an oscillating container the liquid oscillates only in close proximity of the free
fluid surface, while in the lower part of the container, it follows the motion like a rigid
body. This indicates that the sloshing mass m, corresponding to the appropriate vi-
bration mode and the corresponding springs with stiffness kn/ 2 (with which the slosh
mass is fixed at the tank wall at a distance h, from the center of gravity of the undis-
turbed liquid) have to be attached in the proximity of the free fluid surface (h —hj).
This happens with increasing order of vibration modes. The nonvibrating liquid in the
lower part of the container is described by a mass mg, and a moment of inertia Io. This
mass is attached rigidly to the container at a height h below the center of gravity of
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the liquid. (Fig. 16)

To make the mechanical model equivalent to the original fluid system, the sum
of the model mass must equal the total liquid mass.
[>e]
m = mo + Z mn
n=1
For small oscillations, the center of gravity of the liquid shifts horizontally only in the
first approximation. Therefore

must be satisfied.

The spring constant, k,, is chosen in such a fashion that its ratio to the mass of the
sloshing mode represents the square of the Eigen frequency

For rotational excitation about the origin, not all of the liquid participates in the motion,
but a part of it remains completely at rest. So, a frictionlessly mounted massless disc
with a moment of inertia, 14, must be introduced at the origin. Thus, the effective
moment of inertia of the liquid becomes
[ee]
Lt = Ligia Ta = To ™ Mol nzi m, by

Linear damping is introduced in the model by attaching two dampers with the
damping coefficients Cn/ 2 between the mass of the nth vibration mode and the tank wall.
In addition, one must infroduce a damper, cg, between the disc and tank bottom, since,
for rotational excitation of a nonfrictionless liquid, more fluid participates in the motion
than for a frictionless one. The magnitude of the damping coefficients can be approxi-
mately determined from torsional vibration experiments of a completely filled, closed
container of equal liquid height. The damping coefficient, c,, will be obtained from
forced vibration experiments of the free fluid surface. The linear damping terms are
introduced in the usual form (cy=2m, w vy ) where vy, represents the damping factor,
The equations of motion of the model are now derived with the help of the Lagrange
equations. For this reason one determines the kinetic and potential energy as well as
the dissipation function. If one considers y, as the displacement of the sloshing mass,
my, with respect to the container wall, with y the tank displacement in y-direction, with
¢ the rotation about the z-axis, and with ¥ the rotation of the disc with respect to the
tank bottom, the kinetic energy will be:
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m [~e]

-9 va, Looa 1 s )2 4 = 2
T=5>(y+h @)+ 21 9%+ 2 ;:1 m (5 +y+h )23 1 ()2 .

The first two terms represent the kinetic energy of the mass, m , which is
rigidly connected with the container. The series describes the kinetic energy of the
various modal masses, m_, while the last term represents only the kinetic energy of
the disc. The dissipation Iilunctlon is

[oe] o0
_ 1 e2 1 92 _ .2 1 2
D= 2 ;1 °wn T3 Cdzb _nz—:i mnwnyn ntg © Z])

where the sum represents the contribution of the dash pots between the modal masses
m, and the container, and the last term is due to the damper between disc and tank
bottom.

The potential energy is

[}

—% gp ), mh —gsoZmy +—Zky
n=1 n=1

\%

Il

12

2 8¢ moho
Here, the first term represents the potential energy due to the lifting of the mass, m ,
during rotation, while the second and third terms describe the same fact for the moda

masses. The last term is the accumulated energy in the springs. The first two terms
in the potential energy will cancel each other due to the condition of the center of mass
law.

The equations of motion are derived from the Lagrange equation

d 8T oD oV
pevalll el B = Q

8(11 oq ; aqi i

If one considers y, ¢, ¥ and y, &8 generalized coordinates and

Q:—FaQ =_M,Q ,=0,andQ =0
y y e z” Y Yn

as generalized forces, the equations of motion are then

m (y+h ®) + 7m (y +y+h $) =-F_. (51)
n=1 y
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L]
my_ +:_émnhn (¥ +h §)+H ($+) =-M_ . (52)

o0

oo 2 .
qu) +m0h0go g Z
n= i

1
1, G+§) +egd =0. (53)

e ) 4 kv m @ = 0.
mn(y+yn hl’l(P) mn'ynwnyn knyn mng(ﬂ (54)

The first equation is the force equation, the second is the moment equation, and the
third describes the motion of the disc, while the last one represents the equation of
motion of the nth modal sloshing mass. With these equations, the forces, F_, and the
moment, Mz’ can be determined for the particular excitations by introducing the results
of the equation of motion of the modal masses into the other equations. Instead of the
spring-mass system, a pendulum system could also have been applied.

1. Solution of the Equations of the Model. Introducing the values ¢ =0
$ = 0 into the equations of motion, that is, considering the case of translation with
y=y.e it one obtains from the equation of the modal masses, m,,

2 2

-.0 /
y = Y@ -t i = M1
= ~ 5 T " = _ 9 " .
n 1 Mh-1 21ymnn—i no 1 77n—1+2rynnn—1
With this, the force (eq. 51) is obtained to be
oo 2
m n
. |1+ -
Fy = -my n=21 mn T (1 +r;i1 ) (55)
MTh-1"“n'Tn-1
and from equation 52, one obtains the moment to be
m 2 an 2
M . n (g/w n-1 hnnn—i)
= - my 7 1o .
z n=1 m (1 MTh-1 21ynnn—i) (56)
. e it iQt
In the case of rotation about the z-axis, itisy =0,¢ =¢ e and P =y.e

One obtains for the motion of the modal mass, m , from equation 54

4 2 2
(hnnn_1+g/w n_1)90

y_ =73_.2 -
n nn—1+21ynnn—i)

and from equation 51 the force
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(h nz +g/o.)2
n n-1 n-1 ’ (57)

— 2 1
i (4 nn—1+2wnnn—1)

o0
4 4 2
M =¢ [I +1 . +m h?+ Z m h? ]—m Z mn M- 1 n gz/n wn—i“zghn/wn—i)
Z d oo n 0

n=1 =i m (1 -nn- 1+217nnn— 1)

+19 .

As could be expected, the moment due to translational displacement, y =1, is equal to
the force due to the rotation, ¢o = 1. Assuming thaty can be approximated from con-
siderations of a completely filled and closed container, one obtains, by suppressing the
liquid oscillations at the free fluid surface (yn = 0), from the equation

LR + e = .
Irigl‘dqo Idzp 0 (58)
Id(qo+zp) +cdz])=0. (59)
From this we obtain
§= - g___ . (g 19? , (60)
{t+(c/a1 )}~ {1+ (c/a1,)?%}
With this, the moment of the damped model is given by 2gh
2,2
P ) o, 2 Fr
M =g I+mh2+ mh2 22 2 +‘n 5 -
z I e (1_nn—1+21ynnn—1)
212
ch Id 5 (61)
T 2022 .
(cd+£2 Id)

The mechanical model, as it was derived here, isvalid only for containers of rotational
symmetry, that is, for tanks with circular and annular cross sections. It can also be
applied to a tank arrangement of four-quarter containers, which are gaining more im-
portance and are of special interest. Since the side forces of four-quarter containers,
perpendicular to the direction of excitation, cancel each other and since the same is true
for the moments about the axis of excitation, the same model can be applied. One has
only to consider that the square of the Eigen frequency is
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and the total mass of the liquid is given by
[>0]

The number of mode shapes is increased considerably, since the infinite number of mode
shapes in @-direction must be added to those inr-direction. This is expressed by the
double index.

rﬁL\ﬂs

The equations of motion are:

m(y+h<p+ZZm (45 +h_ §) = -F

m=1n=1 R y
(m h2+1 Rl 7 Z m bV @) T (9) -8 7 Z m y ="M
m=1 n=1 m=1 n=1
Id(2p'+ip°)+cdgb =0,
-y.+.y.mn+hmn¢‘+2wm—1n—1ymnymn+win—1n~1ymn_g(p =0 (m,n=1,2, ...... )

From this, similar results for the forces and moments can be obtained as in the pre-
vious case.

2. Determination of the Mechanical Values. After we have derived and
solved the mechanical model, the mechanical values have to be determined. This deter-
mination will be performed by comparing the values of the undamped mechanical model
with the results of the ideal liquid motion (II, C, 3, bandIl, C, 3, ¢). However, some of
these results must be brought into a form that compares with the mechanical model by
certain series expansions of Bessel functions and their zeros of the first derivative. In
the following, the determination of the mechanical values will be performed for a con-
tainer with circular cross section. For containers with annular and four-quarter cir-
cular cross section, the results can be obtained in a similar way and are presented in
Table 5.

Comparison of the forces due to translatory excitation of the undamped ('y = ()
mechanical model (eq. 55) with the force of the liquid (Table 3),
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©  tanhk.n?
F_=-my < 1+2
y Y ZK(GZ
n=1 n-

n-1

_ 32
1 ha Th-1

Y[ (62)

results in the ratio of the modal mass m,, to the total mass of the liquid m

Mo 2y 2 : n=1,2 (63)
m (Gn_ '1;1‘)(62 _1) 3 My 0 8 0 0 o

Comparison of the moments requires a transformation of the liquid moment with

1 o 1
4 2 Z (e -1)
n=1 n—i n-1
and
- —1— —tanhe tanh £ (64)
coshx o 2
ftis - lp p-famk
0 2 'n-1 K 2
M = -my 7\ 2tanhf< n-1 . (65)
z (e -1) (1-n2 )
n=1 n-1 n-1

Comparison with equation 56 results in the already obtained mass ratio m / m and the

height ratio
hy g 4 (“p-1 h
- = =|1- n tanh > N . (66)
€h-1a

h 2

For rotational excitation the liquid force is, bg om1tt1ng the part due to gravity,

F = -my Z 2tanhk n-1 . (67)
y ¢ k(e:  -1) (1-n% )
n=1 n-1 n-1

In comparison with equation 57 the force of the mechanical model results, as one would
expect, in the same ratios mn/ m and hn/ h. The moment of the ideal liquid will be trans-
formed with the help of the effective moment of inertia Ie for ideal liquid in a completely
filled and closed container into the form

2.2
2 M h-
ooy Y LU GRS D 2 VPR JRN S
0 nt L, w w K 2 4 K 2
_ . 9 - 2tanh k n-1 n-1 n-1
MZ——mgo aIf+Z K(€ 1) .
n-1 (1-n% )

n-1 (68)
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This was obtained with the series expansion equation 64. The moment of inertia of the
ideal liquid is

w [1-2 tanh ()]
8 — 3 2
€ (en_i—i)

n= n-1

1
4

1 h 2
—oa2) A .
I ma (a )+

f 12 (69)

The terms in frontof the summation represent the moment of inertia of the rigid circular
cylinder, while the infinite sum represents the fact that we deal with a liquid. Com-
parison with the mechanical model must again result in the ratios mn/ m and hn/h. In
the same manner, one can obtain the mechanical values for containers of annular and
four-quarter circular cross section. The results of these investigations are given in
Table 5.

The magnitude of the modal masses and their locations depend only on the ge-
ometry of the container. Thus, one will expect that the influence of the liquid propellant
upon the stability of the total vehicle will be mainly determined by the tank geometry.
Since the liquid nearly always sloshes in the vicinity of the free fluid surface, the ab-
solute magnitude of the modal masses at moderate fluid heights ((h/a) > 2) would be
independent of the filling. With increasing Eigen frequency, the disturbances penetrate
less deeply into the liquid. This means that the modal masses of higher sloshing modes
approach more and more the free fluid surface (Fig. 17). For decreasing fluid heights,
the location of the modal mass shifts to the immediate vicinity of the center of gravity
of the liquid.

The mass ratio mn/ m increases with decreasing liquid height, h; that is, in long
containers where the ratio of fluid heights to container radius is large, only a small
amount of the total liquid participates in the oscillation. In short tanks, a larger amount
of the liquid oscillates (Fig. 18). Figure 17 and equation 63 show that for containers
with circular cross section, the first modal mass represents the main part of the oscil-
lating mass. In a circular cylindrical tank, the mass of the second sloshing mode is
usually less than 3 per cent of the first mode. Only for small liquid heights ((h/a) < 1),
the second modal mass will reach a value of 8.4 per cent of that of the first. At this
point, one must prove that the free surface displacement at the tank wall is always
smaller than the liquid height, since otherwise the solutions will no longer be valid. In
the container of annular circular cross section, the magnitude of the modal mass de-
pends also on the diameter ratio. In the most unfavorable case of k = (b/a) ~ 0.45, the
mass of the second sloshing mode is about 12 per cent of that of the first one. Again,
we can conclude from this that, for stability investigations, the masses of higher slosh-
ing modes, which are usually well separated from critical frequencies of the space ve-
hicle, can be neglected. For four-quarter tanks, the situation is different, since due to
the tank geometry, other vibration modes appear. Figure 19 shows that the mass of the
consecutive sloshing mode still represents 43 per cent of the first one, indicating that
in stability investigations this second mode can no longer be neglected. A comparison
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of the three main container forms now shows clearly that the masses of the sloshing
modes are definitely influenced by the geometry of the tanks. A comparison of the mag-
nitudes of the oscillating modal masses shows that a propellant container with a circular
cross section is the least favorable one. Here the oscillating mass is about 1,43 p a’.
By separating the tanks with inner tank walls the oscillating mass can be reduced in two
ways. By choosing a concentric wall with half the tank diameter (k = 0.5), one obtains
for the modal massavalue of about 0,96 p ad if only the outer tank is filled, and 1. 14 pa3
if both tanks are filled. Here one should notice that the phase relations of the propellant
in these two tanks in the important frequency range decrease the effective mass rather
than increase it. A much more favorable situation is obtained by subdivision of the tank
with radial walls, for instance, by subdividing into four-quarter tanks. Here the modal
mass belonging to the first Eigen frequency is only 0. 46 5a3; that is, it is only about a
third of the value of the circular cylindrical tank. If all modal masses in the four-quar-
ter tank arrangement were added and the sum were compared with the circular cylindri-
cal tank, it would only total about half of the mass. It can be concluded that subdivision
of tanks into sector tanks has great advantage with respect to the prevention of the effect
of propellant sloshing upon the stability of the total vehicle., Furthermore, it has the
advantage that the vibrating masses are distributed to various sloshing modes. This
means they have their largest influence at different frequencies.

The non-oscillating mass mg, is located a little below the center of gravity of the
liquid (Fig. 20), The spring constant kn is given by the equation ky w; 1m . The
moment of inertia of the disc for containers with circular and annular Ccross sectlon is
given in Figure 21, For decreasing liquid height, the moment of inertia increases with

decreasing diameter ratio.

After the introduction of the linear damping terms into the mechanical model,
damping can be introduced into the theory of liquid motion. In the solution of the me-
chamcal model, we have introduced in place of the resonance terms (1—17 ) the values

"?7 (1+21'y U Performing this with the formulas of the results of the 1dea1 liquid (62),

(65) 67) and (68) one obtains the results for the damped liquid motion. In Figure 22,
the magmflcauon functmn I F /yo I, of the force for the translatory excitation is given

with the damping factor vy, as’a parameter. The parabola is the force if we consider the
liquid as rigid. From there, it can be seen that, in the first resonance, very large
forces can appear and that they are a multiple of the inertial force. Figure 23 shows the
phase of the force. Introducing the experimental results into these figures will lead to
the equivalent linear damping coefficients by comparison with the theoretical curves.
Other possibilities for determination of the damping can be obtained by measuring the
surface displacement, pressure distribution, and the moments and their phases (Fig. 24
and 25). With these, we obtain the same results as with the force measurements. The
free surface displacement measurement will be obtained at the tank walls in the plane

of excitation.
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Another method, which represents an approximate determination of the damping
directly from the experimental results, can also be applied. Since we are particularly
interested in the magnitude in the vicinity of the first resonance, we consider the mag-
nification function about the first resonance. Its maximum will be close to the natural
frequency if the damping v, = vy is small, The amplitude at the natural frequency is
1/2 y~f 1-y* which for small damping can be approximated by 1/2 y. Since the damping
factor not only depends on the maximum height of the magnification function but also on
its width, one chooses on the response curve at the height 1/2y ."/_2 the points Py and Py

for which
2

1 _ n
22 "/(1—n2)2+4'y2’r)2

(Fig. 26). This is a biquadratic equation for whichn, and 1, can be determined. It is
ny-n1 = An = 2y. The results obtained in this manner are in agreement with those ob-
tained from the measured experimental values as read off from the theoretical curves.

An experimental program using a 105-inch diameter container yielded the fol-
lowing:

a. Theoretical results have been verified.

b. Approximate values for the equivalent damping of the liquid have. been ob-
tained.

¢. The efficiency of various damping devices has been determined.

d. The effect of the difference of the viscosities of the conventional propellants
compared with the viscosity of water could be neglected.

The container is mounted on a carriage which was excitzd harmonically with con-
stant amplitude (Fig. 27 and 28). The nearly conical tank bottom part is substituted in
the theoretical investigations by an equivalent circular cylinder whose length is deter-
mined by the volume of the conical part. The forced frequency is varied up to 1.9 cy-
cles. Since the viscosity of the conventional propellants is similar to that of water and
does not show an important influence, water was used for the experiments.

With these results, the damping of the modal masses can be determined. Only
the moment'of inertia and the damping of the disc are missing. For these we go back to
equations (52) and (53) and set the displacement y, of the modal masses m, equal to
zero; that is, we consider the completely closed container. With the formula of the
moment (58), the effective moment of inertia, If,__of the liquid, which is given for ideal
liquid by the formula (69), will be substituted by I. Furthermore, there is an addi-
tional term due to the damping of the liquid in the completely closed container which is
of the form ¢ ¢, as can be concluded by the comparison with the moment of the mechani-
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cal model (61). The values, Iy and ¢, will be obtained by torsion spring experiments of
the completely closed fuel container. They depend upon the properties of the liquid, the
tank geometry, and the number and size of baffles in the tank. For the determination of
the values of the mechanical model, I, and c,, we consider the equation (58), which

with (60) can be written in this form, d
Tf2ﬁ+a<'p =0 .
Here
=1, - a
f  “rigid 1+(c /91.)2
d d
and

_ °q

C ="y
1+(cd/QId)

Once the values I, of the effective moment of inertia and ¢ of the effective damping have
been experimentaflly determined, the moment of inertia, I , of the disc and the damping
coefficient, c & can be obtained. One determines from the above equations

- P
I. =1 e e q = I 1+ 5 P
d “rigid f |: QL L) ]

gid
and

_ [1+ % ‘| ,
SRR 2 T2
d Q (Irigid If)

For small damping, the term c¢ in the moment can be omitted and the effective moment
of inertia can be assumed to be of the form (69) as obtained by the theory of potential
flow. Figure 29 shows the effective moment of inertia for a completely filled and closed
container with circular and annular cross section. For small and large fluid heights,
the effective moment of inertia approaches the value of a rigid body. For increasing
diameter ratio k, the minimum (which is located approximately at a place where the
height equals the outer diameter) shifts in direction of larger fluid heights and has a
larger value. In the container with circular cross section, it is located at a {luid height
h = 1.72a and the moment of inertia is only 16 per cent of that of the rigid body. Re-
sults of the damping measurements are given in Table 6. There the damping values,
which have been obtained from the free surface displacement, have a considerable
scatter. This is caused by the disturbed flow field around the baffles. The damping
values have been obtained from three different fluid heights: h; = 1. 40 meter, hy = 1. 65
meter, = 2.70 meter. At the last two fluid heights, 3-inch wide stiffener rings have
been attached in the tank. As one can conclude from the results of the mechanical
model, the modal mass for a fluid height, h;, is about 42 per cent of the liquid mass,

33 per cent at the fluid height, hy, and about 28 per cent for the fluid height, hs. This,
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of course, has an influence on the results of the damping values. Furthermore, the
location and width of the baffle have a decisive influence upon the damping factor.

SECTION1V. INFLUENCE OF PROPELLANT SLOSHING UPON THE
STABILITY OF A SPACE VEHICLE

The motion of the liquid propellant in the tanks of a space vehicle represents a
potential hazard for stability and control due to its low natural frequencies which are
usually very close to the control frequency. The stability of a space vehicle can be
tremendously influenced by this propellant sloshing. The possibility of the destabilizing
effect of the propellant is investigated by variation of parameters. The propellant
motion in the containers will be described by the mechanical model as derived in Section
III. The stability boundaries are given by the necessary damping values of the propel-
lant along the vehicle. The influence of tank geometry (which essentially determines the
magnitude of the modal masses of the liquid), the influence of the location of the tank,
and the influence of the various gain values of the control system are investigated. Also,
the influence of additional control elements upon stability will be studied. To simplify
the computation, aerodynamic effects and the inertia of the swivel engines will be neg-
lected. As shown in the previous section, the first modal mass of the liquid is sufficient
in circular symmetric containers to describe the motion of the propellant; higher modal
masses have practically no influence on stability. Only in the four-quarter tank arrange-
ment, the two lower modal masses have to be considered. This seems necessary be-
cause the second modal mass can no longer be neglected with respect to the first one.

The control moments will be produced by swivel engines. In the following, a
space vehicle is treated with a simple control system and additional control by an accel-
erometer. The coordinate system has its origin at the center of gravity of the undis-
turbed space vehicle. The accelerated coordinate system is substituted by an inertial
system such that the space vehicle is subjected to an equivalent field of acceleration
(Fig. 30). The centrifugal and Coriolis forces, which result from a rotation, will be
neglected. Furthermore, the acceleration in direction of the trajectory, the mass, and
the moment of inertia will be considered constant. The following investigations are re-
stricted to the interaction of translatory, y, and rotational motion, ¢, as well as the
propellant oscillations, Yo and bending vibrations, n_, in the plane. For simplification,
the so-called disc motion is omitted. It is assumed that only half of the thrust is avail-
able for control purposes. In the numerical procedure, the bending vibrations will not
be treated.

A, EQUATIONS OF MOTION
The equation of motion perpendicular to the trajectory is with m as the total mass

of the space vehicle, m, as the modal mass of the propellant, ¢ as the deviation of the
attitude angle, F the thrust, and g as the swivel angle:
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The factor 1/2 in the control term is there because only half of the thrust is available for
control purposes. The displacement of the modal mass, my of the propellant with respect
to the tank wall is denoted by Y- The transversal displacement of the space vehicle from
its trajectory is given by y. The last term in the equation represents the generalized
translatory force of the thrust with respect to bending. The term Ny denotes the gener-
alized bending coordinate of the vth bending mode, and Y' represents the slope of that
mode at the swivel point of the engines.

In the containers in which the sloshing is not considered, the mass of the struc-
ture and the propellant being considered as rigid is denoted by m' per unit length. I'
is the moment of inertia of the structure about the center of gravify of the cross section,
mg, is the nonsloshing mass of the liquid in the container A, and Xy is its distance from
the center of gravity., Furthermore, I, 1is the moment of inertia of the nonsloshing
mass about its center of gravity and x_ is the location of the modal masses. Consider-
ing I as the effective moment of inertia of the vehicle about its center of gravity, the
equation of motion with respect to pitching (with respect to the center of gravity of the-
vehicle) is obtained

5+ — - = 0.
190+2 XpB + ;(mxx)\yx gmxy?\ - F Z (xpY; Ev” v)nv (71)
Here, it is

I= f(xm'+I') dx+Z(m )+Z m><2—m1<2

ohxoh

The term x_, is the distance of the swivel point of the engines from the origin and k is
the radius (E gyration of the vehicle. The last term of this equation represents the
generalized force of the thrust with respect to bending. Y., is the lateral displacement
of the vth bending mode at the location of the swivel point. l)In the further treatment, it
is useful to refer all length to the radius of gyration k =_/1/ -

The equation of the modal sloshing mass is

) +2 . + 2 _ ) _ e + e + —_
In TEOIANTOON XY -8ty ?(Yv}\nv won) =0 (72)

where A represents either the number of containers and/or the various modes of the
liquid in the containers. The term w) represents the natural circular frequency of the
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liquid and Y represents the damping factor. The longitudinal acceleration is g = F/m.
The slope of the vth bending mode at the location of the modal mass is Y;N

As space vehicles increase in size, the bending frequency approaches more and
more the control frequency and the lower Eigen frequencies of the propellant. This in-
dicates that in many cases the bending vibrations can no longer be neglected. The e-
quation of the vth bending mode is

my

f, twgn,t wln, + L (Gt enYy) - _271\71%11 Ypf = 0 (73)
A B B

Here wV represents the natural circular frequency of the vth bending mode and gV the
corresponding structural damping, which usually is proportional to the amplitude (re-
storing force) of the elastic system and in phase with the velocity of the vibration. Here
it is represented as linear viscous damping. This was preferred to avoid complex coef-
ficients in the stability polynomial. It is also justified for small damping since the
structural damping shows its largest influence only in the vicinity of the bending fre-
quency. The generalized mass, MB’ is

— 1 v2 + 'Y 2 gt 2 4 12 4 2
MB f maYvdX roYv dx ; (mtho)\v 107\Y07\.V m?\Y?\v) ’

where Yo)\v and Y(;M represent the displacement and slope of the vth bending mode at
the location of the Ath nonoscillating liquid mass.

Actually, the control equation cannot be written as a linear equation. However,
translatory and rotational vibrations usually occur at small frequencies where the con-
trol elements can be considered as essentially linear. Nonlinearities usually occur at
higher frequencies, as a cause of saturation of amplifiers, and limited output of veloci-
ties. Without wind disturbances, the control equation can be written in the form

fi (B) = f2((psA1) s

where f; and f, are functions depending on the form of the system. In linear form one
can write these as

(V) _ (v)
vaﬁ - 2 aV(Pi + g2A1 .
1 14
Here p, are the so-called phase lag coefficients, and ?; is the indicated deviation from

the trajectory as indicated by the gyro. A, represents the indicated acceleration normal
to ‘the longitudinal axis of the vehicle. It is:

e - 1
(Pl (p ZV; anVG,
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where Y;) G is the slope of the vth bending mode at the location of the gyro., For a rigid

space vehicle where the elastic behavior of the structure is neglected, it is sufficient
to use

Here the last term with a gain value g, is proportional to the indicated acceleration per-
pendicular to the longitudinal axis of the vehicle and is obtained by a measurement with
the help of an accelerometer. The term g, is a measure of the strength with which the
accelerometer influences the control system. In this form of the control equation, the
time derivatives of the control angle, 8, which with increasing frequency, cause in-
creasing phase lags, have been neglected, This is justified because of the small mag-
nitude of control and propellant frequencies.

The accelerometer is described by the equation

2

o

+ A =V -x & -g0 + N ' .
: ) Ai+Ai v xaqo g Z,, (anva + ganVa) (75)

S\Dgwl M:W
|

Here w_ is the natural circular frequency of the accelerometer, ¢_ its damping factor,
and x, ?ts location. The displacement, YV , of the vth bending mo%e at the acceler~
ometer location willbe setequal to zero if a rigid space vehicle is considered. For an
ideal accelerometer it is w, >> 1 and for a rigid space vehicle, the equation of the ac~
celerometer is simplified to

Ai =y - xago - gp. (76)
B. STABILITY BOUNDARIES OF A SPACE VEHICLE WITH A SIMPLE CON-
TROL SYSTEM

To obtain the main results of the influence of the propellant sloshing on the
stability with minimum numerical effort, we will first treat the equations of motion and
the propellant as free to oscillate in one tank only. This is justified in many vehicles,
since the propellant masses in the other tanks are sometimes considerably smaller. It
is also justified in the same way for the Saturn vehicle whose booster tanks consist of
many containers with smaller diameters. Here, the sum of these sloshing masses is
relatively below the one of the large second stage tank. Sometimes for tanks with
lighter propellant (such as liquid hydrogen) whose density is only a fraction of that of
liquid oxygen, its modal mass, compared with the heavy propellant, can be neglected.
Furthermore, we will consider the space vehicle as rigid (nv =0). If one introduces
the value n, = 0 into equations 70, 71, 72, 74 and 75 and chooses only one equation, 72,
we obtain the equations of motion of a rigid space vehicle with additional control by an
accelerometer. With the usual assumption for solution of the form eswct’ where s is
the complex frequency s = o + iw, the differential equations are transformed into
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homogeneous algebraic equations.
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(77)

Here, A = gg, and p = ms/ m is the ratio of the sloshing mass in the container to the
total mass of the vehicle.” For nontrivial solutions, the coefficient determinant 77 with
which we obtain the characteristic polynomial in s must vanish.

6 i
E BiS =0,
i=0

The coefficients, Bi’ are represented as polynomials of £ s and Vs and are

Bg =kyp + kia%é

By = kyg + 2kygy Fkygf  + kieijzs

By = kg + 2kqqv thyf  + k12£2S

B3 = ke + 2k7‘)/s + kags
Bz = k3 + 2k4’}/s + ksgs

B1 = ki + Zkz’ys

(78)

Here the location of the modal mass, £g = xs/k, (with respect to the center of gravity)
and the damping factor, ¥g, are extracted since they are the ones with which the sta-
bility of the vehicle can be influenced. The representation of the stability boundaries
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will be in these coordinates. It presents not only the magnitude of the required damping
in the tanks, but also its location. The abbreviations kj (j=0, 1, 2....18) depend on the
frequency and damping factors, and gain values of the control system, as well as on the
mass ratio, u, and the vibrational characteristics of the accelerometer. With the no~
tations ¢, as the damping factor of the control system, w, as the circular frequency of

the control system, w2 = / (1- 2 AxExa/ 2k?) and w co 2s the circular frequency of

the control system w1thout accelerometer (W2 =gXE 2o/ 2k? ) and {p = XE/ k, &, Xa/ k
as the distance with respect to the radius of gyratmn, and v o We/Wes Vg =Wy /W,

the ratios of the Eigen frequencies and the value A = 1 -% (1+ép £,)
the coefficients kj are with

2¢ a gx._ay
c’o E 3 A A
a1 = we 2k? =2 £ Yo (1 2" 2 *E Xa) (79)
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The parameters are as follows:

a. pu= mS/ m = ratio of modal mass of liquid over total mass of space
vehicles

b. Zc = control damping factor

c. v o=uw / w, = frequency ratio of undamped propellant frequency to un-
damped control frequency

d. Yg T damping factor of propellant

e. v = wa/ coc = frequency ratio of undamped accelerometer frequency to
undamped control ?requency.

f. ga = damping factor of accelerometer

g. A =8gy = product of longitudinal accelerometer of the vehicle and gain
value of the accelerometer

h. ga = x_/k = ratio of the coordinate of the accelerometer location to
radius of gyration of the space vehicle

i. gs = x /k = ratio of the coordinate of the location of the modal mass of
the propellant to radiusof gyration of the space vehicle, and

je ao = gain value of the attitude control system.
The stability boundaries are characterized by the roots s of which at least for one

the real part will be zero, while the others are stable roots. This is with Hurwitz
theorem for a stability polynomial of the nth degree

Bn =0, Hn- { =0
where Hn— { represents the Hurwitz determinant of the form
By B; By ..
By B, B, ...
Hn— (= 0 B; By e (n-1) lines and columns
0 B, B, ...
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Representing the stability boundaries in the (gs, 'ys) - plane, the Hurwitz determinant
Hg = 0 results in

b2
CJ.(SS) vg =05 (81)

Lo

j

where the functions C,(¢ ) are polynomialsin ¢ . C (gs) = 0 is the stability boundary
for the undamped liquid.” It represents the intersection points with the ¢ -axis. For
all points (¢ ,vy ) above the stability boundary, one obtains stability. Bgecause of B =
0, the stabilily i§ interrupted at the left and at the right. This means that only within "
these boundaries stability is guaranteed. From By = 0 it is recognized that the corre~
sponding stability boundaries to the right and left are given in the form of straight lines
perpendicular to the gs—axis. It is

£ =+ ——k-1—7=i Vi-u (82)
kqg u

S

For most vehicles, these boundaries play no practical role. Substitution of ¢ =y =0
into the Hurwitz determinants detérmines whether the origin is in the stable or insfable
region. A necessary and sufficient condition for stability is [15]:

a. The coefficients

B.,B s, B mm e > 0
n n-1

By, By > 0 for even n
By > 0 for odd n
b. The Hurwitz determinant

Hn_is Hn_3 _______________________________ > 0

H3>‘0 if nis even
Hy>0 if n is odd

In the numerical evaluation, the distance of the swivel point from the center of
gravity of the vehicle was chosen, x_ = 12, 5-meters and the radius of gyration k = 12, 5
meters. The total length of the space vehicle is 56. 5=meters. If an accelerometer was
used for additional control its location was at X, = -6 meters (in front of the center of
gravity ).
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1. Rigid Space Vehicle Without Accelerometer Control. Using control with-
out an accelerometer (A = 0) (a simple attitude control system) results in a stability
polynomial of fourth degree. The coefficients B; would be obtained from (77) and (80)
if one introduces w, = © and A =0 (Bg = B; = 0), the stability boundaries due to By, =0
again are straight lines, {5 = * V(1-u) . The stability boundary from the Hurwitz

U
determinant H, 4 =0 (here Hy = 0 or By By B3 = B, B} + B} By is

2 2 2\ ad
(Ky+Kqk S+K3€i)+27 o Kyt +KgE ) +y (KotKgh STRoE ) +8Y =0, (83)

where
K; = kikgkg - Kikg - Kok}

Ky = kykyke+ kiksky - 2kokglg - kikyg

Ky = kekgky - kokg - Kikyy

K, = kekkg + kokgk + kiksky - 2kgkeky — 2kgksky

Ky = Koksks + kylkgky + Kykgks + kpkgk - 2kokky - 2kgkokyg
Ky = kokgky - 2Kkokyy

Ky = kokykg + kikyky + Kokgkq - koldf - K3kg

Ky = koksky + Kykgky = K3kyo

Ky = ki

Kyo = Koligkyy.

The points of intersection of this stability boundary with the gs— axis are obtained by
setting 'ys = 0 and solving the quadratic equation in

K1 + Kzgs + KsEZS = V.

The roots

£1= - |‘§d I
£ =| Eq | (1-p) /2 v?,

give a first indication for the critical area. Here 1/a v? is considered to be of small
magnitude. This assumption is satisfied in most cases 1if the control frequency is far
enough away from the Eigen frequency of the liquid. Therefore, the result expresses
that the stability boundary for small values of 1/ aov2 intersects the ¢4 - axis in the

S
vicinity of the center of gravity (origin) and the instantaneous center of rotation ¢ 3=x d/ k.
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One can see that £, becomes, due to the factor of 1-u, sensitive to changes of
i/ aovzs. This indicates that for decreasing gain values, a,, the intersection point shifts
toward the tail of the vehicle. The same behavior occurs if vg= cos/wc decreases. This
means that, for decreasing Eigen frequency of the liquid or increasing control frequency,
damping must be applied in the aft section of the space vehicle. Figure 31 indicates that
the danger zone for instability of the vehicle is located approximately between the center
of gravity and the center of instantaneous rotation. In this zone the propellant must be
more or less damped, depending on the magnitude of the modal mass of the liquid. For
increasing modal mass, not only more damping is needed in the danger zone, but also
more damping is required to maintain stability. This is most unfavorable if the control
frequency is below the Eigen frequency of the propellant, that is, if vg < 1.0,For vg> 2,
the wall friction ('ys =0.01)is already sufficient to guarantee stability.

The change of the control damping ¢ indicates that, for increasing subcritical
damping Lo < 1, the stability in the danger zone willbe diminished while, for increased
supercritical damping £e > 1, the stability is enhanced. This means that less dampingis
necessary in the container to maintain stability in the case ¢e>1. No additional baffles are
required inthe danger zone if the mass ratio u = 0. 1, and the control damping ¢ = 0.5
or ¢, = 2.0. This means that, for these values and the parameters vg =2.5and a,= 3.5,
the wall friction in the container is sufficient to maintain stability.

Another important question of great interest for the design of a large space
vehicle is the choice of the form of the propellant containers. As seen from Sections
II and 111, the tank geometry plays an important role for the modal masses and the
natural frequencies of the propellant. Containers with large diameters exhibit small
natural frequencies which are often too close to the control frequency. Of course, the
magnitude of the modal mass magnifies considerably this unfavorable effect upon the
stability. Clustering of numerous smaller containers not only increases the natural
frequencies of the propellant (due to smaller diameters), but also reduces the modal
masses which is a much more important effect. In addition to weight saving and the
slight increase of the natural frequencies, subdivision of tanks by sector walls has the
advantage of distributing the modal masses to different vibration modes of the liquid.
To summarize: with increasing mass, stability decreases. The influence of the Eigen
frequency change of the propellant with fixed modal mass is such that a decrease of the
natural frequency increases the danger zone toward the end of the vehicle and requires
more local damping in the propellant. With increasing natural frequency of the liquid,
the influence of the propellant sloshing on the stability of the vehicle diminishes more
and more. Wall friction is already sufficient to maintain stability.

The gain value, a,, of the attitude control system shows, for decreasing mag-

nitude, a decrease of stability in addition to a small enlargement of the danger zone
toward the end of the vehicle.
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2. Rigid Space Vehicle With Ideal Accelerometer Control. Introducing into
the control system an additional control element in the form of an ideal accelerometer
(w, >>w,), proper choice of the gain value, g;, which determines the influence of the
accelerometer in the control system, can minimize the danger zone. This indicates
that the possibility of an instability due to the propellant sloshing in a container can be
considerably diminished (Fig. 32). Because of vy >> 1, the coefficients of the stability
polynomial are Bg = Bg = 0, and one obtains again a stability polynomial of fourth de-
gree. The same formulas are valid as in the previous case except that in the values,
kj, the appropriate terms with A have to be considered. The boundaries By = 0 are
again straight lines,

1 242 2 A A Ay '
: __2u0-2) uh(£E+£a)i\/u7x(£E+€a) -16u<2 -1) [1-/~c 5 " g (1 u)ﬁE-Eaj},

S| : .
B} 1 Lun(g €)i\/u2?\2( e 2o (A )[ A2 |
- T tia fptteuds - 1 |tn-5 =5 - g ey |

(84)

which are parallel to the y_-axis. For values, A = 'ggg < 1, the danger zone is located
approximately behind the center of instantaneous rotation and shifts with decreasing gain
value g, toward a zone between the center of gravity and center of instantaneous rotation.
The stability decreases, which means more damping in the tank is necessary for in-
creasing A > 1. This means that, for stronger influence of the accelerometer in the
control system, the danger zone shifts in front of the center of instantaneous rotation
and increases with increasing gain value toward the nose of the vehicle. For propellant
containers in this location, strong damping must be applied to obtain stability. For
values, A = 1.5, the vehicle is instable if the tank with 10 per cent slosh mass is lo-
cated in front of the center of instantaneous rotation, and if no additional baffles are
applied. For containers behind the center of instantaneous rotation, the vehicle is
stable. Furthermore, one recognizes that A = 1.0 represents the most favorable gain
value. In this case the danger zone shrinks to a small region around the center of in-
stantaneous rotation.

The change of the other parameters, such as the slosh mass ratio u, the fre-
quency ratio vy = ¢ S/ W the control system damping ¢,, as well as the gain value a
of the attitude system, exhibits the same influence as the previous case. An enlarge-
ment of the danger zone toward the end of the vehicle occurs for large control frequen-
cies and also for small propellant frequencies (v_ < 1), even in the most favorable case
A =1, 0. The addition of an accelerometer introduces another important parameter: its
location ga. For A =1, the most favorable case for an ideal accelerometer, the in-
fluence of its location upon stability of the space vehicle is unimportant. For other
values g,, the location of the accelerometer has considerable influence upon stability.
The strong effect of the accelerometer in the control system (A > 1.5) exhibits strong
instability if the container is located behind the center of instantaneous rotation with the
accelerometer being in front of the center of gravity. Propellant sloshing in those tanks
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located in front of the center of instantaneous rotation will make the vehicle instable

if the accelerometer is in front of the center of gravity. For decreasing values g, <1/g,
the stability behavior of the vehicle approaches that of a rigid vehicle without additional
accelerometer control. These results are too optimistic since every accelerometer
has its own vibrational characteristics which must be considered.

3. Rigid Space Vehicle With Real Accelerometer Control. The dynamic
behavior of an accelerometer, and its natural frequency and damping factor ¢ , have a
non-negligible influence upon the overall stability of the vehicle. From the results of
equations 78 and 80, it is recognized that the stability polynomial is of sixth degree.
Therefore, the stability boundaries are given bﬁr H; = 0, and Bg = 0 (equations 81 and 82)..

The main influence arises from the natural frequency of the accelerometer. In
the numerical evaluation, two circular frequencies w, = 55;12 rad/sec are considered
for the accelerometer., Figure 33 indicates that, for decreasing accelerometer frequency
(with a damping factor, ¢4 =J'—2/2 ) the danger zone increases from the center of in-
stantaneous rotation toward the end of the vehicle. The influence of increasing liquid
mass has the same effect as previously with the exception that it is very much amplified
for small Eigen frequencies of the accelerometer; a large amount of damping is required
in the container in ordér to obtain stability of the space vehicle. For the natural fre-
quency of the accelerometer of w_= 55 rad/sec, wall friction is already sufficient to
maintain stability. For small natural frequencies of the accelerometer, propellant
sloshing is even excited. This means that the situation is more unfavorable with an
accelerometer than in the case without one. The damping required in such a case would
be about three to four times as much as in the case without additional accelerome ter
control. This indicates that the natural frequency of the accelerometer should be chosen
as large as possible. To recognize the influence of the accelerometer characteristics,
we consider the effect of the changes of the Eigen frequency, Wy, the damping factor,

Cas and the coordinate of location, x,, upon the stability of the space vehicle. For in-
creasing natural frequency of the accelerometer w, < wg, an increase of the danger zone
is obtained, and more damping is required in the container to maintain stability. Above
the natural frequency of the propellant, a decrease of the danger zone and enhanced
stability can be observed. This means that less damping is required to maintain stabil-
ity. The larger the frequency ratio va/ vg = coa/ w_, the less damping is required in the
continuously decreasing danger zone. The influence of the frequency, w a and the damp-
ing factor, Ea of the accelerometer can be seen in Figure 34. The increase of g en-
larges the danger zone and requires more damping in the propellant container. This
effect is more pronounced the smaller the Eigen frequency of the accelerometer. From
a damping factor £y OT greater, which is about twice the critical damping, one recognizes,
in the case W, = 12 rad/sec, that a further increase of the damping factor decreases the
danger zone slightly from the back and slightly enhances the stability. A very important
parameter in the design of a control system of a space vehicle is the location, £y, of an
additional control element in the form of an accelerometer. The influence of this value
can be seen in Figure 35. An accelerometer location behind the center of gravity of the
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vehicle must be avoided. Shifting the accelerometer toward the nose of the vehicle en-
hances the stability. An increase of the control frequency w. (Fig. 36) below the
natural frequency of the propellant (vs > 1) increases the danger zone toward the tail

of the vehicle. For w a = 55 rad/sec, the required damping in the liquid for maintaining
stability of the vehicle is relatively small (v ¢=0.005 and less). The influence of the
control damping ¢ c is given by the fact that, for increasing subcritical control damping
¢e < 1, the danger zone decreases and the stability increases, while for supercritical
damping ¢, > 1, the stability becomes more unfavorable (Fig. 37). The influence of the
propellant frequency being below the control frequency indicates again the enlarged
danger zone which stretches nearly from the center of instantaneous rotation toward the
end of the vehicle. Increasing propellantfrequencyleads toa decreasing danger zone and
less required damping. Approaching the Eigen frequency of the accelerometer makes
the vehicle more unstable and increases the danger zone toward the end of the vehicle.
The gain value, a,, has only small influence upon the stability. Its gain growth in-
creases stability slightly and decreases the danger zone some., Of important influence
upon stability is the gain value, g,, of the accelerometer because it presents the strength
of the accelerometer in the control system. Figure 38 exhibits this influence for two
accelerometer frequencies. For an Eigen frequency of the accelerometer of W, = 55
rad/sec, one recognized similar behavior as in the ideal accelerometer case. For
values of A = 1.5, an increase of A = gg, exhibits an increase in stability and decrease
of the danger zone between the center of instantaneous rotation and the center of gravity
of the vehicle. For further increase of A, the danger zone shifts in front of the center
of instantaneous rotation. With increasing A, more damping is required in the propel-
lant container in that zone to maintain stability. For an accelerometer with small Eigen
frequency, the situation is quite different. For increasing gain value, g,, the stability
constantly decreases. Here, the influence of the accelerometer favors instability. It
not only increases the danger zone toward the end of the vehicle, but it also requires
considerably more damping in the tank. It even requires more damping as in the case
A = 0 (without accelerometer control). From this one can again conclude that large
accelerometer frequency is required to stabilize the vehicle with respect to propellant
sloshing in the tank. The conclusion can also be made that the danger zone is located
between the center of instantaneous rotation and the center of gravity, and that it can

be diminished by an additional control element in the form of an accelerometer whose
Eigen frequency and location have to be properly chosen. These results are valid only
for the rigid vehicle, in which the sloshing propellant mass in one container is much
larger than that in the other tanks. With more than one sloshing mass of equal magni-~
tude, the results will probably look different. Furthermore, it has to be mentioned that
the bending vibration of the vehicle has an effect on the propellant sloshing as well as on
the choice of the accelerometer characteristics and its location. If the control fregency
and the first bending frequency are sufficiently separated from each other, then the lo-
cation of an accelerometer requires negative displacement of the bending modes if the
bending modes are normalized at the tail of the vehicle. This indicates, that, for the
control of the first two bending modes, an approximate location of the accelerometer in
front of the center of gravity is appropriate. This location would also be favorable from
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the standpoint of propellant sloshing. From the point of view of rigid body control
which restricts the gain values to certain values (Fig. 39), care must be taken.

C. STABILITY BOUNDARIES FOR SPACE VEHICLES WITH TWO CONTAINERS
AND SIMPLE CONTROL SYSTEM OR QUARTER TANK ARRANGEMENT

Considering a rigid space vehicle with a simple control system of the form
B=a, ¢ +a @ and the liquid in two tanks free to oscillate, one has to substitute into
the equations 70, 71, and 72 for v =0 and A =1 and 2. Introducing again into the thus
obtained differential equations the time dependency, eS“c¢°, one obtains for nontrivial
solutions the determinant:

2 2 g 2.2 2.2
S -g— a +a;w S w*s w’s
W g 2( o 3 c) @, MW,
—gx JAR J258
0 slw? + a +a,sw - Xyw?2 g2+ - Xow? s24+
c 2]&2(01 c) 2(10 g) kz(zc g)
= 0.
slw? - (xqw? s%+g) slw? +2y,0 ws+w] 0
c Je c c
(85)
2.2 2 2 2 .2 -9
S“w - (X" 8+ W 8%+2vowow S+w
o (%9 o g) 0 o Yawa SHTW)

Here p; = my/m and uy = my/m are the modal masses in the two containers or the first
two modal masses in the quarter tank arrangement. The evaluation of the above de-
terminant results in a stability polynomial of the sixth degree. To represent the sta-
bility boundaries in the two-dimensional case, the damping factors in the two containers
are set to be equal (y; = vy, = 'ys) . Furthermore, one chooses the distance of the rear
container (1) to the front container (2) to be of value £, Therefore, it is x;= X

Xy = X+ £ . The stability boundaries again are obtained from H; = 0, Bg = 0. The last
condition again represents, in the (gs - ys) - plane, parallel straight lines to the Vs -
axis which in most cases have no practical meaning. It is when ¢ 2= f'/ k

{_uzgz ﬂ:’\l [1 - (ytuy)l [uﬁm—u;uﬁj ]} .
’\I(ul + pg) 2 -{;—/,ngﬂﬂz'\j [1 - (uytug) 1l pgtug - pypg Eg]?

£1i2 =

The main purpose of this investigation is to treat two circular cylindrical containers in
tandem arrangement with the modal slosh masses being considered approximately equal.
Figure 40 gives the results for two containers of equal volume and with a modal mass
distance of 4.2-meters. The danger zone as a whole shifts slightly toward the end of the
vehicle and the required damping in the containers is approximately the same as that of
a vehicle with one container with double the modal slosh mass. The results of the
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change of parameters are similar to those in the stability investigation with one, propel-
lant container. Enlarging the distance between the two propellant containers, however,
one recognizes that the danger zone in which damping has to be provided will shift with
nearly unchanged magnitude toward the tail of the vehicle., Furthermore, it indicates
that a little less local damping is required. This is an important result because it ex-
presses that - for a multi-stage space vehicle in which the forward modal mass location
is constant during first stage flight time and the other mass location is shifting away
from this - the entire rear part of the vehicle must be provided with appropriate baffles.

With clustered circular cylindrical containers whose modal masses are at the
same height, a considerable reduction of modal propellant masses is obtained as com-
pared to a single circular cylindrical container of equal volume. Furthermore, the
natural frequency of the propellant is slightly increased by clustering tanks. For p
containers, the natural frequency of the liquid is proportional to the fourth root of the
number of containers.

(p)
f tanh (el\ﬁ)'(h/a))
n ~ 4 -

= (D ‘\/pr/ tanh’ (c_h/a) (86)
n

The total mass of the propellant reduces proportionally to the reciprocal value of the
square root of the number of containers:

(p)

m ) tanh (er\{E h/a)

S —
m(i) Jp tanh (e h/a)
S

(87)

In clustered containers a smaller total mass of the liquid oscillates with higher
frequency; that is, p is smaller and wg is a little larger, both enhancing stability. The
influence of the various parameters is the same as in the case of one container with a
simple control system. Because of structural reasons and due to the increased weight
of the containers, the clustering of propellant containers has some disadvantages.
Change in tank geometry can minimize the influence of propellant sloshing upon stability;
that is, by subdividing the tanks, the magnitude of the modal slosh masses can be redu-
ced and the slosh frequencies can be increased. We consider two possibilities for the
subdivision of the circular cylindrical containers. For example, one would expect
that by properly using a concentric wall to subdivide a tank, the phase relation of the
modal masses in the inner and outer tank could be tuned to minimize the effect of pro-
pellant sloshing upon stability. To accomplish this, the magnitude of modal masses in
the inner tank and in the annular ring tank should be approximately equal. At a diameter
ratio of k = b/a = 0.77, the modal masses of the two containers are approximately
equal. Unfortunately, their frequencies are not very favorable. Therefore, one does
not obtain the optimal cancellation of the effect of these two propellant motions. At the
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diameter ratio of k = 0.5 the phases are very favorable; however, the modal masses
working against each other are only of the ratio 1:5. For the diameter ratios k = 0. 3,
0.5 and 0.7, the required damping in the containers for maintaining the stability is ap-
proximately 12:9.8. The behavior of the various parameters is similar to the case of one
container. The other possibility of reducing the influence of propellant sloshing on the
stability of the space vehicle is to subdivide the tanks with radial walls. The most im-
portant form of a subdivision by sector walls is the four-quarter tank arrangement. In
this tank arrangement, the second modal mass of the propellant also must be considered
in the treatment of stability. This tank arrangement has the great advantage that only
about one-third of the propellant mass oscillates. The second modal mass in the four-
quarter tank arrangement is about 43 per cent of that of the first. Therefore, it must
be considered in stability investigations. Compared with a space vehicle with circular
cylindrical container, a four-quarter tank arrangement requires only half the damping.
The overall stability is, therefore, considerably enhanced. The results for the four-
quarter tank arrangement can be seen in Figures 41 and 42. For increasing modal
mass, more damping is required. Again, the danger zone is located between the center
of gravity and the center of instantaneous rotation. Increase of subcritical control
damping decreases stability while the increase of supercritical damping increases sta-
bility. For increasing control frequency, the danger zone enlarges toward the end of
the space vehicle, and a larger local damping is required to maintain stability. The
influence of the Eigen frequency of the propellant is similar to the case of a space ve-
hicle with one propellant container. If the natural frequencies of the propellant are
below control frequency, the propellant has to be strongly damped in the enlarged danger

zone. Small gain values, ag, require more baffling in an enlarged danger zone.

SECTION V., CONCLUSION

In the stability consideration of large liquid propelled space vehicles, the
influence of propellant sloshing has to be considered in the dynamic treatment. To
eliminate instability caused by propellant oscillations, several possibilities can be ap-
plied: first, subdivision of the propellant containers in which the oscillating liquid
masses are decreased and distributed to different modes, thereby increasing the Eigen
frequency of the propellant ; second, proper location of the propellant container; third,
appropriate choice of the control system, proper choice of gain values and additional
control elements; and fourth, introduction of baffles into the liquid to disturb the flow
field.

For the determination of the flow field of the propellant in a circular cylindrical
ring sector tank, the linearized equations and boundary conditions are treated with the
liquid of a free fluid surface. The liquid has been considered incompressible, non-
viscous, and irrotational.

The behavior of the liquid in circular cylindrical sector tank containers with
circular cross section, annular cross section or one-quarter circular cross section can
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be obtained by limit considerations. The natural frequencies of the liquid are indirectly
proportional to the square root of the tank diameter and decrease with increasing tank
diameter. Furthermore, they increase with the longitudinal acceleration of the space
vehicle. The influence upon the Eigen frequencies of the liquid by the tank geometry is
exhibited by the value £,,,. The Eigen values are influenced less by concentric walls
but exhibit quite 4 change if radial walls are introduced in a tank. The influence of the
‘liquid height upon the Eigen frequencies is only noticeable if the liquid height is less than
the tank radius. For decreasing liquid heights the natural frequency of the propellant
tends toward zero. As in a mechanical vibration system,the magnitude of the surface
displacement, the forces and moments of the liquid are increasing with increasing ex-
citing frequency before the first resonance. For a frequency band around the Eigen
frequencies of the propellant, violent liquid motion takes place in the container. Behind
the resonances the magnification functions decrease again. To introduce a damping
into the results of an ideal flow theory a mechanical model (spring-mass system) is de-
rived which describes-the motion of the propellant for the stability investigations. By
introduction of each vibration mode as an independent degree of freedom, and by com-
parison of the results of the ideal fluid theory with those of the mechanical model, the
spring constants as well as the magnitude and location of the masses of the’ mechanical
model are obtained. Magnitude and location of the masses depend on the container geo-
metry and the liquid height; therefore, the influence of the liquid propellant upon the
stability of a space vehicle has been affected by the container geometry. Since the
liquid particularly oscillates only in the vicinity of the free fluid surface, the absolute
values of the masses for fluid heights larger than the tank diameter are inde-
pendent of the tank filling. With increasing Eigen frequency the disturbances shift
further toward the free fluid surface. The mass ratio of the modal mass to the total
liquid mass increases with decreasing fluid height. This ratio indicates that in a long
container for which the ratio of the fluid height to the tank diameter is large, only a
small amount of the total liquid participates in the propellant sloshing. In short con-
tainers a large amount of propellant participates in these vibrations. - For decreasing
liquid heights the location of the modal mass shifts into the immediate vicinity of the
center of gravity of the liquid. The nonvibrating mass is located close to the center of
gravity of the liquid. In containers of symmetrical circular cross section, the first
modal mass represents the main part of the oscillating propellant. The second modal
mass, in the case of a container of circular or annular cross section, represents only
3 per cent, respectively,12 per cent of the first modal mass. This indicates that for
stability investigations these and higher modal masses can be neglected. For a four-
quarter tank arrangement the mass of the second mode has to be considered since it
represents still 43 per cent of the first modal mass. A decrease of the modal masses
can, obviously be performed by subdividing the container using radial and concentric
walls. It has been shown that the subdivision by radial walls is much more effective.
In the case of four-quarter containers the vibrating liquid mass is reduced to more
than half of that of a cylindrical container of circular cross section. Another advantage
is exhibited by the fact that the vibrating masses are distributed to various vibrating
modes and the Eigen frequency-is slightly increased.
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The nonlinear damping of the liquid is introduced into the forced vibrations as
equivalent linear damping, which is determined by experiments.

For the determination of the magnitude and location of the required damping in
the containers, one treats the stability of the vehicle by considering the equations of
motion for translation, pitching about the center of gravity of the vehicle, the oscil-
lating propellant and the control system. With the usual solution in the form of e5¥c",
the characteristic polynomial is obtained and is treated with the Hurwitz criterion. Here
the stability boundaries are best determined in terms of the location of the modal mass-
es and the damping factor of the propellant liquid. Not only the magnitude of the damp-
ing, but also its location, is obtained.

The results of the investigation of a rigid space vehicle with a simple control
system and one propellant container in which the liquid is considered to oscillate, show
that along the vehicle a danger zone for instabilities appears. This is located between
the center of gravity and the center of instantaneous rotation. In this location the pro-
pellant must be more or less damped according to the magnitude of the modal mass of
the propellant. To avoid this, the container with large modal mass should be located
behind the center of gravity. If the natural frequencies of the propellant are in the
proximity of the control frequency, which is sometimes the sase with large containers,
then the danger zone increases further behind the center of gravity toward the end of
the vehicle. Therefore, the Eigen frequencies of the propellant should be as far above
the control frequency as possible. The change of the control system damping exhibits,
with increasing subcritical damping, a decrease in stability, and with increasing super-
critical damping, enhanced stability in the danger zone. Decrease of the attitude con-
trol value, a , results in a small decrease in stability.

The introduction of an accelerometer as an additional control element into the
control system can enhance the stability considerably if the vibrational characteristics,
the location of the accelerometer, and its gain value are chosen appropriately.

Here the location, the Eigen frequency, and the gain value of the accelerometer
play an important role. With properly chosen accelerometer characteristics, the danger
zone can be reduced to a small region about the center of instantaneous rotation. If the
gain value of the accelerometer is smaller, the danger zone expands into the direction
of the center of gravity. If it is too large, the danger zone shifts in front of the center
of instantaneous rotation and requires comparatively large damping in the propellant
contamners. Here the accelerometer is located in front of the center of gravity and its
natural frequency is appropriately separated from the control frequency. If the latter
is not the case, the propellant sloshing is excited and strong damping is required in the
tanks. The mounting of an accelerometer behind the center of gravity must be avoided.
Increasing damping factor of the accelerometer requires more damping in the contain-
ers located in the danger zone.
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With two containers in the tandem tank arrangement, the danger zone shifts with
increasing distance of the modal masses toward the end of the space vehicle. With in-
creasing flight time, the distance of the modal masses increases (which takes place
during the draining of the first stage containers). Therefore, the total rear part of the
vehicle has to be provided with appropriate damping in order to maintain stability.
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APPENDIX

A. ROOTS OF CERTAIN BESSEL FUNCTIONS.

For the previous results, the roots of

I () Yl (£)
201 20
A_HL (&)= =0
2
J;_n_ (k&) Y'El— (kg)
20 20

form =0, 1, 2.... and arbitrary 0 < k < 1, must be known.
J. McMahon represents an asymptotic expansion [16].

For most of these roots

The lowest root, however, was not known, until H. Buchholz pointed out its existence
[17]. In Reference [18] D. Kirkman represents the roots of the above determinant

for m/2c =0, 1, 2, 3 and 4. In the numerical evaluation of fluid oscillations in cir-
cular cylindrical containers one needs to know the roots of J;n (e) =0 and Am (£) =0

2x 2a
for various diameter ratios 0 <k <1, For A (£) = 0 the roots have been numerically
determined and are represented for 0 <k < 0.9 in steps of Ak = 0.1 [10]. The roots of
J' (€) = 0 which occur in the case of a container of circular quarter cross sections
are given in Table 4.

1. The Representation of Various Functions f(r) in Bessel Series:

The determinant C is
m/2x

J_nl()\mn ) YQ(Amn r)

C (7\ r) = 20 20

m  mn

2« IO ) ,
m mn & Y_nlo‘mn a)
20 2a
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Its derivative
J' (X% r) Y' (A r)
m mn m mn
20 20
C.ill_(Amn r) =
2¢
1 1 A
J_ri(hmn 2) Y_nl ( mn 2)
20 2¢

is equal to zero for r = a and for r =b. For r = a it vanishes identically and for r = b

because of the roots £ =A a.
mn mn
A function f(r) being piecewise regular in b < r < a, is satisfying the Dirichlet

Conditions, can be expanded in a Bessel-Fourier series
m=0, 1, 2...

18
[
3
B
|8
=
=3

f(r) =

Il

o
o
Q

n

The unknown coefficients of the expansion are obtained by multiplying both sides
of this equation with r C_ (A r) and integrating fromr=btor=a, (A, FA ).
m m mp mn

20
With the integral of Lommel the integral of the right hand side becomes
rC_ (A _1r)C A r) dr = L
f m P ) Cpy ¢ ) TN mp Cm Pan ¥ Cly O ¥

2a 20 mp 20 20
- 1 \
xmn C__m_(}\ pr) Cm—(?\mn r) (B1)

20 20
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It vanishes, if one of the following conditions are satisfied:

1) ¢ (A a) =C (A a) =C_ (A b) =C (A b) =0
m mn m mp m ' mn m mp

20 20 20 2a

2) C' (A__a)=C' (n__a)=C' (A__b)y=C! (A__b)=0
m mn m  mp m mn m m

20 20 20 E&

3) A C_(r a) C' (A a) = A C_ (A a) C! (A a)
mp m  mn m mp mn m_ mp m mn

(3]

2¢ 2¢ 20 20

C_(n b) C' (A b) =A c_ (a b) C! (A b)
mp m mn m  mp mn m mp m mn

270—5 20 _2—& 2_a

In the here treated fluid oscillations the second condition is satisfied, since Amn a and
A b are roots of the equation A = 0. Therefore those terms vanish for which A
mn m mn
2a
+ Amp (n ¢ p) and the coefficients of the expansion are:

a
r f(r) C (A r) dr
bf %l—oz mh
b = (B2)
mn

a
bj rCin (?xmnr) dr
20
For p = n the equation (B1) assumes an undeterminant form of which the value can be

obtained either by Taylor series expansion or the rule of L'Hospital and the Bessel
differential equation for Cm /

20’
2 m2
2 B 2 ! e 12
f * C_ng_(xmn r) dr 2 Cm (xmn ) |i1 4a? )\ ’rzj " Cm (Amn r)
1, mn m
2w 20 2«
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and it is

R a’ [ 2 m? ] C'z
= —— — —————— + 7\‘
f t C_ni(}\mn r)dr=y Cgl_(xmn a) |t-3a2 xinn a? ﬁ( —
b 26, | 2 1 Za
bz | 9 m2 '2
- —— | ——— et + b
2 Cm (Amn E 40% 2% b Cm (Amn )
m mn m
2a . 2a

Because of the second boundary condition this integral becomes with }\mn a= gmn

a 2 ( 2
2 r __.a 4 g _ M. 2 2.2
j t Cm (gmn a) dr = 2 £ {,”2 £ (gmn 4042) C_nl(k gmn) (k gmn
— mn mn

b 20 20
2
m

-1 az)} (B3)

Here the value C__ (£ ) =2/mé is the Wronskian Determinant. The coefficient
m °“mn mn
20

bmn of the series expansion can therefore be determined from

a
2¢g2 [ ri(r)cy (5 ) ar
b = b 2 * |
mn 4 y ) (B4)
a? 2 My 2 2 42 m
2 ginn S pra Cln_(k ) (K E - T)
20

The problem that remains is the solution of the integral

a

[ rtxc_ (¢
b m

r

=) dr

mn a
2a

Most of the integrals of the previous treatment are of the form

J 2 ¢ (z) dz.
v
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These can be obtained with the help of the Lommel function

(z) -zC  (z) S (z).

j 2“C (2)dz=(k+v-1)zC (z) S
14 v K-1p=-1i V-1 KV

The Lommel function is

- ~V+ +y+ — -
S (z)=s (z) + 2" 1I‘(’C——-"V - r (= 1 sin K—V'/;J (z) - cos K——Vw Y (2)4}.,
KV KV 2 2 2 v 2 4

where sK ) is the particular solution of the nonhomogeneous Bessel equation

o _d?w dw K+

d z? +Zdz

Z +Hzt - 1) w=12z

and can be represented as

2ut2
Mz K—V—I—i) (K+l/+1)
K-1 (-1) (2) F( 2 T 2
=2z

With the recursion formula
C (z)=C'(z) +ZC (2),
y-1 v 7 v
we obtain
f e (z) dz=(k+v=-1)z C (z) S (z) -z8 (z){C' (z) +ZC (z)}
v v K=~1p-1 Kp v Z vV
which results for the integration from
Zl:gun to Zzzkgvn (Zzgvn r/a)

because of
1 - =
CV(Evn) C;j(k Svn) 0
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in

gvn p
kf z CV(Z) dz = tk+v-1) gvn [SK—iv—i (gvn) Cv(gvn)
gVI').
-k SK—iv—i(kgvn)'CV (k gVn)J -V [va(gvn) Cv(gvn)
- va(k Evn) Cv(k Evn)jl :
We obtain

K+1
a_kK r _a 2
bf t CV(gvn a) dr = K {Sx—iv-l(gvn) wgvn—ksfc-iv-i(kgvn) Cv(kgvn):]

vn

K+1
va 2 .
- §K+1 [SKV (gvn) ngn - va(kgvn) cv(k 5vn)] ) (B5)

vn

The representation of the integrals can also be performed by integration of the series
expansions

fzK Cv (z) dz=Y;}(§Vn)f zK Jv(z) dz -J;}(gm) J zK YV(Z) dz.

Integrating the first integral term by term and collecting terms of J

obtains
(V—K-i—i +>
(v+2pu+1) T 2 y

<v+;<+3 ) Jv+2u+1
r(=5— +u

where Re (k +2 u+1) > 0 if we integrate from z = 0. The second integral is obtained

v +)2,;,L+1one

f zKJV(z) dz =z (z) (B6)

by termwise integration of the series expansion of the Bessel function of second kind.
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. m
It is for (2a integer)

2 = —
m M
63

ol 2 = -p-11! (D
fzKYm (z) dz)=- Z 2Q 2

m
- ! + 2 - — +
9 uo(k + 2u P 1)

m
— +
20 2p

w (-1)F (&
+2ZK+1 o (-1) (2)

z 1
c {lns-= p(u+1)
T = m , (I 2 2
p=0opl Qo+ p)t (G0 Rt 20+ 1)

m
— + 2
200 H

(-1)H (g)

K+1 o
2¢(u+§a+1)}- ;

! Q + ! _nl + + 2
<2a w) ! (2a+x 2u+ 1)
where ¢ (z) represents the logarithmic derivative of the gamma function

v (z) = d(InT (z))

~18

:—’)/+(Z-1) (7\'+1)1( +7\')
dz A=0 z

v is the Euler constant.
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émn r ’nl“‘ﬁ 1)
f Ko (z)dz=Y (¢ ) £ :
m m "mn Pmn o /mo Kk,
kg 20 20 40 2 2)
k 1
2<2 +2’“‘+1)F<4 gt T H ; "
m— !£ 3 m mn
U=0 F<4&+2+2+u> 2a T2KT
gfc+1
_kK.J (kg -J' (& )< - .
L orop+t oLoma T
20 K 20
m m
_9 m T v K 21 -55 +1 K+1
m : 200 (1 - a
'<2oz H 1) b (1K 2t
) o N B
, +¥Zn64 oyt = =1 +1 g+1
o (-1)F g (1-kK e ) 2K &
}1 mn mn . (B8)
:_, s

0 ou+m/2w m m
H el / Js (/,L+%)! (E-(;J—HH- 2u+1)2

m ioap Hg Tom
o (-1)M K20 Eza k¢
7\ mn _ mn 1
) In 5 -5 9 (p+1)
m
2

m
1 —_— 1 —_—
u! (p+o) ! (2a+K+2“+1)

20
K+1 2ut+m/2a
i m { 2£mn %o(-i)ugrgn / 5mn
-= + == + +
g ¥ (W5 v 1) r Y u+tm/20 m m ln{ 75
p=0 2 pt (pr o)t Qurgotr+d)

1 1
-Ezp(u+1) -§¢(M+§m&+1)]
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m
If one has for f(r) = r2¢ then the integral in the numerator is

m
-+ 2 m
a X +1 r aZa - 2 2a
[ rZ2 7 c (¢ D) ar=25 -k C (k&) (B9)
m “mna £ n . gmn m mn
b 20 m 20
and the coefficients of the expansion rm/za
I
2o r
- Z “n Cm mn 3
n=90 -
2a
are m m
m, 2o 2 20
2 (204) {w gmn ~k Cr_n_ (k gmn)}
mn : 2 2
4 2 Mm% 2 ) 21__}
{Wz g2 (gmn 4042) Cm (k gmn) (k gmn 4% J
mn 20

These results were obtained from
v+1 g v+1 o v+1
fz Cv(z) dz = Yv (gm) j Z JV(z) dz JV(gyn) j Z Yv(z) dz

e v+i ' v+i
_Yv(gvn) z JV_H(Z) -Jv(gvn) z YvH(_z)

which can be expressed with the recursion formulas

zJV+1(z) =VJV(Z) - zJ;J(z)

4 YV+1 (z) =v Yy(z) -z Y;j(z)

as

+1
sz C(z)dz=vz C (z) —zv+1C'(z).
v v vy
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. . o o . -l _
Introducing the integral limits, we obtain with Cv(gvn) Cv(k gm) 0

3 ‘
[Ma" e () dz=v gzn{cv(gm) -k C (K gm)}.

kgVIl

Therefore it is

a v+2
v+1 r _rva : WY
f t Cv(évn a) dr = gin {Cv(gvn) k Cv(k gvn)}

b
with which one obtains the integrals of the text:

a a

2 I, — 43 . LY
Jx CE("Emn o AT = Nl ) frczm-i(gzm-ina
b 201 b 20y

a
r p—
f c&(gmn S dr=aNy(¢ ).
b

2

+2 izrn—i)
in which

T r
For roll excitation we used the series expansions for (g) , (g)

integrals of the form

L r 3 r
2m—1(€zm—1n a) dr, fr CZm—1(€2m—1n a)
b 2 o b 2 o
———“;1_1 +1 ai
o r T
f r CZm—i(gzm-in a) dr, bf T sz-—i(me—i a) dr
b 2 o 2
.
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occur. The first two integrals can be determined with the recursion formulas

jzi'”c (z) dz
14

i-v = zi_VC'(z)—z_VVC (z)
v v

Il
|
N
Q
—_—
N
S
|
|

+1 +1 +1
fzy C (z) dz = v C (z)=szC(z)-zV C'(z)
v v+1 v v
and are with
' —
2m—1(€2m—1n) 0
2 o
and
1 =
2m-1(k €2m—1n) 0
2
_2m-1
2 o
2m-~1 2m-1
a1-"a r ( 2 oz) a 2
fr (& =) dr = -
2m-1°"2m~-1in a 52 .y
b 2 o om-1in 2m-1in
_2m-1
2 o
-k sz—i(k £2m—1n)
2 &
2m-1
a 2m-1 <2m—1) s
2 & 2 2
f r sz_i(gzm_in,g) dr = o Trg
b sm=2 52 2m-1in
2 O 2m-#+n
2m-1
2 O
-k Com-1k gzm—in)

(B12)

(B13)
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The third and fourth integral is obtained from (B8) by substituting v = m/2a by
(Zm - 1)/ 2a and k = 3 and k = 1 respectively. In the denominator there appear integrals

2m-1
2 —_—————————
belonging to the series expansions (r/a)ﬂ: and (r/a)i 2 o

These are obtained with

(B3) by substituting m/2a for the values 2m-1/2a. With this one can determine the

coefficient g,

series expansions of the form

r?ooor N r
() ln(a)‘zoﬁncz(‘fzna)

-2

medin Bmetn bmein®G g For a = 1/4 there appear

>
r r
() =), h Cy(& 3 (B14)
n=>0
2 o T
(i-) =), 8, C (6 %)
n=~0
The numerator integral for Bn is obtained by integration by parts
. 3 T T 2a'k’Ink at 9
f r’ In () Cy (¢, 2 dr=-—-——-—2——-—— C, (k 52n> ey [Cz (Ezn) - k* Cy (k Ezn)
¢ 2n
b 2n
gzn
4
_4a” [ z C, (z) dz (B15)
§4
2n k an

The integral

[ zcy(z) dz = vy (¢, ) {2 3,(2) dz -34(¢, ) [z Yy(2) dz
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is with

3 (2) 3 (2) 3.2
fz“+1-[ g }dz=—(u2—vz)fzu_1 g }dz+z“+1{ vt }
Ly, (=) Y (2) Y, , (2

JV(Z)
+ (p-v) 2! (B16)
YV(Z)

and the recursion formula for J y and Yv

f z Cy(z) dz=-vY;(§2n) [’3 Ji(z) - zJé(zﬂ +J;(.§2n) [%Yi(z) - Z Y;(Z)J
= 7 Cy(2z) —% [J1(Z) Y;(gzn) - Yy(z) J;(EZH)J (B17)

Applying the recursion formulas

z J (z) =z J'(z) +vJ (z)
V-1 ) v

zY (z) =2Y'(z) +v Y (2)
V-1 v 14

we obtain

fz Cy(z) dz =—;}5C;(z) +§2-Cz(z) (B18)

Finally the integral is
2, r r 2atk’lnk al 2
f v In (5) Cz(gzn a) dr = —_—_5_2——_ Ca gzn) +E-2— mE K Gy €2n)
; 2n 2n 2n

S2a8 |2 2 (k& ) (B19)

76 - 2 .
S2n mén ‘n
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The values g _and h are obtained from1, . and Uy o 1n’ if2m - 9/2 o is

substituted by 2 and the index 2 m - 1 is taken to be 2. The integral in the denominator

of the coefficient (Bn, hn’ gn) is
Crope Dar=sE |t (2 -4 - Chke, ) (28 -4 (B20)
fr 265 2 T2l T g2 2n AL S
b 2n in

2. Limits for Kk — 0. For the determination of the zeros of the function
(&) =0 for k = b/a — 0 we substitute m/2¢ = v for noninteger values and

Am/ 200
m/2c = n for integers. The determinant is then

J' (&) Y! (&)
A (g) = v v =0
J;}(ki) Y;}(ké)

It is
J;}(k &) YL(&)
Y;}(k £)

J;}(é) =

the equation from which the roots are found. For the limit k —0, we need the ratio of

. J' (x)
lim j_v_
x—0 | Y' (x)
v
For small x
A X vrIA v
(-1)" (/2) X

o)
J,(x) :}ZJO A T (vtr+l, 22T (v+1)

for integer and noninteger values of v. It is

-v+2A
-0 */2) x

=Y &

0
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From the definition of the Bessel function of second kind

Jvcosvw-J

Y = -
v sinv w

and the relation of the gamma function

T'(y) - T(1 -p) =—=
sin mv
we obtain for YV for small values x
v
-2
Y (x) g_____I‘(v) forv >0
% %
TX

For integer indices n the Bessel function of the second kind is given by the series

expansion
n-1 n-2A
_2 x 1 -A-1)! 2
Yn(x) == {(y +1n 2) J (x) - > x2=0 Y (X)

n+2\

0 A X
1 0™ X /2) { }
'272‘0 Al (n+A) !  (A) + 9 (A +n)

with y = lim {1 +é +% +..... +% -Inn} ~ 0. 5772 as the Euler constant. The expres-
n —~»co
sion y(A) is defined by
Xog
lp(x)-: VAT — Z/)(O) =1
H=0 K

For small values we obtain, because of lim [xn * Inx] =0 for n > 0 the approximated

value
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With the recurrence formulas

J;}(X)=%[J (0 -3 (0]

1
Y;j(x) =35 [Y (x) -Y, (x)1]

the derivatives for small values of x are

y-1 9 v-1
I (x) ~ X 4 _ X ~ X
v 21J+2 T'(v) T (v+2) oY T ()
¥ 2 o’ T (v+1)
] Y ————s - 2 - A ———————
YV(X) 1 % T(v+1) -x*T (v 1)} 11
T X T X

Therefore the ratio becomes

J' (x)
14

Y! (x)
14

T X

T T(w+1)

For the limit x —0 (k —0) we obtain

;n/ZOl(&) =0

The roots of this equation are expressed by €on’ This means that in the limit k —0

the roots £ —e . Itis
mn mn

lim A (5)} (&) and lim £ =€ | (B21)
k—0 m/2a k—0 0 |

3. ¥ . . .
Ym /20 (gmn) has been taken into the integration constant Amn, an.
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Therefore we have to consider the limit of

T
C&(imnja")
200
Y'__ (gmn)
20
It is
C L I .
m (gmn a) Y£ ('Smn a) JEL (§mn)
2¢ - (¢ I.) 2¢ 2
Y ( ) - 1
m gmn 121; mn a Y_ ('smn)
20 20

For the limit k — 0 we obtain, because of (B21) the value

T
m Cmn 2
20 r
lim ~ =J (e 3)
k—90 Ym(gmn) o ma
- 20
2

This expresses that in the results of the circular cylindrical ring sector container in
the limit for the sector tank instead of Cm the function Jm has to be substituted.

m—— —

20 20

From (B6) we obtain the needed values for a sector tank:

(e ) (Re == > - 1) (B22)

2p+m/2a+1 mn 20

2m=-1 A
2m - 1 (Zoz +2#+1> 3

[>e]
- S (€40
Li(ezm—in) 4o € ) Z’O 2m-1 N Zm-1 1 2m-—12+121 :111/
moihop= 4a y 4o H 2 o H

2 [~
g

L°(€mn) B
mn u=0

€

(B23)
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i
T o +%> 00 (érg-+2u+9 T(ZE-OZ +”—2
Ly(e ) =—%% y e J (e ) (B24)
*mn r(® 4,2 (o + +§> S T
Can- \aa” 2/F 40 H7T 2 20
The values f are obtained from
2m-1n
a 2;11—1 1
r
f r JZm—1(€2m—1na) dr
_o 20
em-1n  2m-1 a
20 9 T
r r
a o‘['sz—»1(€2m-1n a) dr
20
Here it is
a 2 2
2m - 1)
f (p7) dr 2 1 40 €2 J2m—1(€2m—1n)
fo) 2m-1in —
20
and
am -1
+2
2m-=-1 2m=-1 2o
2 1 % (204 )
[ J(p¥) dr = : S I G I
0 € ——
2m-1in 20Y
It is therefore
o (32=t)
- Z : (B25)
2 _(2m-1
[€2m—1n (204 ) sz-i(ezm—in)
20
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The values ezm ‘n in the series expansion

2 o]
r
- = e J
(a) n>;o 2m-1in 2m-1( 2m-1in a)
20
are
a
3 T
r’dJ € —) dr
of 2m—1( 2m—1na)
2 O
2m-=-1in a r
2 2
a rdJ €
of 2m -1 ( 2m-1n§)
20

The numerator integral is obtained from (B6) and ezm N is therefore

9 ¢ (Zm 1) <2m—1 _b <2m-1 +1)
_ “%m-1n 4« 4«
eZm—in‘
oG] i
2m-=-1in 2m—1 am-1in

2m -1
+ 2+
2 o ut sz—1 (e 2m—1n)

+2pu+i »
2m-1 2m - 2m-=-1
0 (40& +U_j> < ) ( +/J,+1> (—ﬁ— +IJ,+?

In a quarter tank the values fn and e, require the integrals

~718

(B26)

7

a
31, (L r
f r ln(a) J2(€2n ) dr
O
4
3 ' X _2a”
of rdhle, ) dr 2 J2(s)
2n
rre Har=2 (@ -4 e )
f rJz “n a T2é “n 21y’
0 an
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The first integral is obtained by integration by parts and application of (B6)

a
4 o J (e_ )
f 3 1In (_;'j) Jz(ezn —:l-) dr:__fz_a._ Z 2put+4 - 2n (B27)
0 en u=0 (p+1) (u+3)

The remaining integrals are obtained from (B6).

4. Some Series of the Roots of Bessel Functions. During the course of the
introduction of equivalent damping into the result of the ideal fluid theory a few formulas
had to be brought into the form of those of the mechanical model. Certain series expan-
sions of the roots of Bessel functions had been used, which will be derived here. The
expansion of r/a into a Bessel Fourier-Series was (B6)

== 2 ) (B28)
o 2 _
n=2o0 (en 1) J1(€n)

with which we obtain for r = a
o) 1 i
Y, (&-pn "2 (B29)

n

n=0

Expansion of r® in a Bessel-Fourier Series in the Interval o <r <a results in

8

r
= a Ji(e =)
n n a

0

nk

n

where

a
fr‘lJ(e £) dr
0 1'% a

B r
ﬁrJ%(e =) dr
n a
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The iritegral of the numerator can be obtained from (B6) if one takes k = 4 and v = 1
with the recursion formulas of the Bessel functions and J} ( en) =0itis

a 5
4 X _a 2 _ 30
f rtJy(e ) dr a (3€ -8) Ji(e ). (B30)
(0] n
Therefore
3 efl- 8
a =2ad
n

efl(efl— 1) J1(€n)

the series expansion of the function (r/a)? is

2 _ L,
I'S 0 (3€n 8) J1(€n a)
(2) =2),
n=09 € (e -1)Jy(e) (B31)
n n n
For r = a we obtain
3 < 1
t=2 2 82 €2 (e - 1)
n=0 n
from which we conclude that
o0
i i
= = B32
~ et (e? - 1) 8 ( )
n=o0
and
‘ 1
oi 2 -3 (B33)
€ 8
n=0 n

B. EFFECTIVE MOMENT OF INERTIA OF THE LIQUID

In the description of liquid oscillations as a mechanical model, the effective
moment of the fluid in a completely filled and closed container has to be known. This
problem can be solved by oscillating the completely closed container about the coordinate
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axis. The solution is obtained from the Laplace equation with the boundary conditions

(for excitation about the y-axis)

0® . i

- —1960e Z COS @
o . i
az\—1990e r Ccos @
0%

— =0

rog

92 _ige ¢ zsina
roQ o

The velocity potential is

at the tank walls r=a, b

at the tank bottom and tank top z = =h/2
z=h/2

at the sector wall =0

at the sector wall ¢=a.

2a a bmn sinh ¢ cos ¢

®(r, ¢, 2z,t)=1Q06 1t - T Zcos g+ n C_ (p)yp.(Ct)
e cos h (k/2) o
5mn 2
The pressure distribution is obtained from
p=-;‘§i +gp Qi/2)—z+ o & (a-rcos @)
ot o]
and is
= gt ot meoso s 2a a_ bmn sinh ¢ cos ¢ C(p)
b=p 0 ¢ ncosh (k/2)
+Eg[l21-—z+eoglﬂt (a - r cos qo}] . (C2)
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With this the various pressure distributions at the tank wall can be obtained. The follow-
ing represent the various moments

o *th/2 5 o
Mx=‘f' f [apa—bpb]zsingodgodz-f f (pu-po) rzsin<pd<pdr
o -h/2 o b
a "‘% a "%
+f f zZp _ drdz—f f zp _ — cos adrdz
I O b h 9=«
2 2
o +b/2 a a
M = f f [ap -bpb] zcos ¢ do dz + f f (pu—po) r? cos ¢ do dr
Y o -b/2 a o b
q th/2
- f f p _azsinadr dz.
b -h/2 Y7
They are
A m _
<in? 3 4am bmn[(-i) cos a - 1]

elQ t a2

TR
== 2 = 2
MX m Q e, 4(1+]¢:) = +

ad(1-kY) g

K m™-a? |r¢ m mn
mn -
2 @

2 tan h (x/2). o? 2 L K
(1 - ) "\ 2o e -kC_ (k& )| + No (§mn)
— (C3)
2 a? ginn Ny (Emn)

_ ; 2mga (1-cosd) (1+ +k2)
2 n tan h (k/2) 3 = 3 +k—_k)
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and

My: -m926 eiQt g2 1 (E_)Z (1 +Kk? {4 sinw cos o N 48, bmn (—1)msina
o 12 \a 4 — .

o aa(i-k% g
_I_ 2 tan h (x/zh o’ 2
l t- K j more- o? Témn -k C_Izl’l—oz (k Emn)jl"' NC_) ((mn)
26% £ Np (£mpn) tan h (k/2) , 2mga sina (1+k-+k?)
(m?r’-a?) 3 @ (1+k) (C4)

For a container which is roll excited about the z-axis, the Laplace equation has to be
solved with the boundary conditions

%%=O at the tank walls r=a, b

o0&

i 0 at the tank bottom and top z = - h/2
z=h/2

o . iQt =

1 op 1Q<pore at the sector walls ¢ =0, a.

The velocity potential is given in (Eq.41) if we omit the double summation. The moment
about the z-axis is given in Table 1; therefore the effective moment of inertia of the
liquid about the z-axis is

2 - .9
I ff=ma2 1;k + 32« azr(ni +1k )
ze (2m-1) [(Zm 1)% 72 - @2

2m-1\? /
2 o
2;m—1
Q—k ) (1 - K% J
/

.,
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The first term is the moment of inertia of the rigid body and the ratio of the mom ent of
inertia of the liquid to that of the rigid body is

2m-1 2
‘ a2
Izeff= _ 640 = -k

: 2 ), T e
Z0 m=1 4k 1_kw— /211(1—1_{_2
\204 (C5)

. 2] i
. 22115'_1 2 m-1 2m—1v [(2m-1)2 7% - 40%] (2m-1)
(1 -%% -k

The last terms in equations C3 and C4 represent the static moments, because the co-
ordinates of the center of gravity of the undisturbed liquid are

_2_  sina (1+k +k?)
5573 o (1 +k)

_2 (U-cose) (1+Kk+i)
s~ 3 T (1+ k)

The effective moment of inertia of liquid about y-axis is therefore

o ) _ -
L omar L (B U@ [ smGeosa) MVt Py sine
yeff ma“ <75 aj 4 = = ginn

. 2tanh (k/2 ) a? 2
<_ . > .<m2 ®-at |ré “kCp (RE I PN

=~ 2
2 a? gmn N, (gmn) tan h (k/2)

- (C6)
(m?  -a?) «
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and about the x~axis

I =m a? 1+ K SiI_lf 2 + 4am__bmn [ (2—1)1:1 cos &~ 1] . (1 _2tanh (K/Z)\
xeft * “ aal-%k) rsmn * (C7)
L [ 9 2t 52 N9(€ ) tan h (k/2)
- ngn _kcg%g(k gmn (m 7T2—oz2) K

Since the moment of inertia of the mgld body

I =ma? 1+k2 sin @ cos @
yo 12

1 +k2 i sin @ cos &
X0 12 -

o

The ratio of the effective moment of the liquid to that of the rigid body can be
obtained easily from these results
can be obtained.

For oscillations about the x-axis similar results

For a container with circular cylindrical sector cross section corresponding
values for the effective moment of inertia can be obtained by substituting N and N, by
L and L,. The roots & transform into € and for the value [2/7 & -k C
(o} n n n m
20
(k & )] has to be substituted by J (e ). TFor a container of circular cross section
mn m mn
20
(@ =1) the ratio of the moment of inertia is

4

i- tan h € h

w0 € h/a n ":J
2 a
1 ) { 2

I_yeff_1 PRREEEL €2 (2 -1)
I a
y0

(C8)

)

which approaches, for h —0 and h —, the value one

@-I'-*
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Table 1
CYLINDRICAL TANK WITH RING SECTOR CROSS-SECTION

it
Excitation in y-Dircction y (t) = yqe

iQt
Excitation in y-Direction Y(!) = ¥}®

Excitation About y-Axis

8(t) = 0,e'™ and x-Axts  y(t) = %o

Fluid Force in
x-Direction

Fx = my 7o

8114

m+1 2 =
- It h =
G CabugPAnt RO K f & r—-—--kc (ke >] ¢ )}

zﬂzuz_{,? L m_ 0 mn’

mia (1-k2) (1=97) K %

i 2 I 1 fmn
- = /! r C‘L (me) dr = T K:q-lj/s z c% (z) dz

a

Fluid Force in
y-Direction

Fy' mﬂeyeelnt {1 m_mn

2¢ b n2[1-(-1)"cosd]

2
Ga (1-k%) (1-n?) . ) a

tanh k ./ & [ 2 ] -
tamh k(L& 12 e g |k [N Gy 4+ __<°'2-2_ . ‘)"
K 3 - kC (ki
202 "ma ;\a mn ormnT T hzee GE\RE n;i; tn) |
+ No<€mn)>}

F = -mg 0) tae —4m® 9, RETR Amnﬂ"h(")[l (~-1)"cosd]
y X Yo, m 3

o 2 m
b ke
m Kyly = (m sur@ - ok
. ”1«{'2 2) (za“ W+ DrG,- 7 oM .
=Y (gm) 1, o K+l ) . b
% - 5 2w PGg *2 7w 20+ 2u=1
E )ym n! 2‘*'%(1-,‘&2;:—%,“)
-, we ) 43y Gy &t b
a + 2 +1 E " Z ZM‘%“ n
r=0 2 (K+2p9'1-’23)
m m m 2
W = 5 2t
= x K+2ub0— -1 ®° .
S ¥ . (1_k g ) . qu C-1)Mx b
o/ m n 248
L W+ oo Y rfm_ o ,Hm 1 m m
as Mu!(u+m) (2a+f<+2u+1? =0 u-(,ﬁ-z) (m,+x+zp+1)
w5
-
ke 1 1 m 2 ¢n Em
. ma) - SV (A1) -yt gy F D) -7
{522 F) o zw.__
! u=o 5 ("*E) (2p*-25+x + 1)

[ln(iiﬂ'%‘r W+ 1) - w (p+—+1)}}

Moment About

y-Axis

10t] (14k®) 9§03 | sinG 10, 12 9
M = m0%ay e { = - M = - Dge_ a(l+k®) _ 2.2) of it
y ° 14—)& * % y B « e Hma=Q e .
a o o X
+1 2
-1)™e b 4 _
m mn 2 142!
— B 88 {]tanhk + =- ) sindcosa) 1  h
(1-k3)5__(1-72) q ok 8 <“ & -> 17 & wl . s
mn 2(-1 sin .
(1+#3) 5 in?2m0r 823t (1-k?)
mnn

A -1 sinfcosd
)

f & 2 502
(coshl( 1)]'[@(,@“ -kc%k&mn)>+ {2x0)

207¢2 N2t )
Nt ,]+$n- ﬁ__m“_> s
M (@2x2-3R) Kk cosh k

cos - £ st :
ool o

o (e )} Fet2C { £ X
— 2k cosh(5)-B sinn(d) ] +
zmg—““a 1.2 o “mn (Pn?-&2)k mn 2" “mn 2}
) N
ng a sin a a-k7)
L)
in*a
Moment About 2 - int o £2.C
x-Axis M. = -mﬂzayoemﬁ{-(%l <1+ s_ingzc_os&)_' }— M =4 w o« . wma2a? 8ol ine
4 &a x 4h x { 1.84i00e0s ma x e
a a O] o
{1-(=1) ccsa]q -
l!—":——z————- (ltsnh K+ 1—)_ “" &
A-k®)E (1-n7) | 21=(-1)"cos&
slnacosa 1 b3 &% (14k3)
- . l- —(=
e s o) )
- & - )
cosh K (P27 _ B
[m {cosh G- -mm(—)} {"2— 2

(x°m2-3P)

P2 N (¢
ka(kEm“)>mo(§mn%» ! Aon) {A cosh(—)

BEEE Nals
mo(émn)] ( 2.2 ag) K cosh K)

-2mg % (i-cos®)  (1-k) b (xPm?-8P)k
a (1-k%)

_xmnsinh(g)ﬂ}zmg 2 [2-cosd] (1-k2)

& (Ik®)
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Table

2

CIRCULAR CYLINDRICAL SECTOR TANK

; ox(r) = x elBt itati ; o 8(e) moellt !
Excitation in x- and y- Direction’ X X%iat Excitation About y-Axis and x-Axis i0e |
y(t)-ye X()-Xe i
mxo cos @ ‘ meo T2C08 @ t
Velocity Potential ¢ = 10t ( cos(q‘)) 2'2':—"?‘—:';)"1@) o = (r,9,2,t) = '{ elat - A‘mCOsh(é) + an'inh(C)] CO!&‘@) i
1y, r sin @, (l"' ) A0X rzsing i
Fluid Force in 10t m+l, = ‘
x 1 b q a 0 e [:] ’isinh(—)( 1) 8inC =
x-Direction . - maeint{ o[* , 2 sind {mi 1y :u:h K e - _mg{ o mzeiﬂt{ o ) Acn { 012_ J(rErln)+Lo(Emn)]
PAIIY Ga (1-9%) x 0 X K Qa (nPn2-GP)
5 ————°‘—f——- (e ) +L (e )
(xPaB-G2) ‘mn ‘0" mn’
Fluid Force in b0, Ba% (a @ 0 10 % Aaxnh(g)A o - 2
y-Direction F, = wp?e T | - & (—T:—“z)- { "‘;- [1-(-1)“'coaa]“2h K ~{—-—_—-I F - -mg -m0%e T [1-(-1) cosa][——z—'z_—J(émn) +
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Table 5
MECHANICAL MODEL

Circular Cylindrical Tank

Container with Annular Cross Section
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With the increasing size of space vehicles and their
larger diameters which lower the natural frequencies
of the propellants, the effects of propellant sloshing
upon the vehicle stability are becoming more critical,
especially since at launch a very large amount of the
total.weight is in the form of liquid propellant. With
increasing diameters the eigenfrequencies of the
propellant become smaller and shift closer to the
control frequency of the space vehicle. Furthermore,
the oscillating propelant masses and the corre-
sponding forces increase considerably. A relatively
simple means of avoiding strong dynamic coupling can
be achieved by subdivision of the container by radial
or circular walls. This results in smaller sloshing
(over)
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propellant become smaller and shift closer to the
control frequency of the space vehicle. Furthermore,
the oscillating propellant masses and the corre-
sponding forces increase considerably. A relatively
simple means of avoiding strong dynamic coupling can
be achieved by subdivision of the container by radial
or circular walls. This results in smaller sloshing
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masses and higher eigenfrequencies. Another pos-
sibility is the clustering of tanks with small diameters
which has the disadvantage of a weight penalty. For
stability investigations the influence of the oscillating
propellant has to be known. For this reason forces
and moments of the propellant with a free fluid sur-
face in a container of circular ring sector cross sec-
tion performing forced oscillations must be deter-
mined. This will be performed with the assumption
_of irrotational, frictionless, and incompressible
liquid. Linear equivalent damping is introduced with
the help of a mechanical model describing the fluid
motion. It has to be determined by experiments.
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